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Abstract—Privacy-preserving Support Vector Machine (SVM)
computing scheme is proposed in this paper. Cloud computing
has been spreading in many fields. However, the cloud computing
has some serious issues for end users, such as unauthorized
use and leak of data, and privacy compromise. We focus on
templates protected by a block scrambling-based encryption
scheme, and consider some properties of the protected templates
for secure SVM computing, where templates mean features
extracted from data. The proposed scheme enables us not only to
protect templates, but also to have the same performance as that
of unprotected templates under some useful kernel functions.
Moreover, it can be directly carried out by using well-known
SVM algorithms, without preparing any algorithms specialized
for secure SVM computing. In an experiment, the pfroposed
scheme is applied to a face-based authentication algorithm with
SVM classifiers to confirm the effectiveness.

Index Terms—Support Vector Machine, Privacy-preserving,
EtC images

I. INTRODUCTION

Cloud computing and edge computing have been spread-
ing in many fields, with the development of cloud services.
However, the computing environment has some serious issues
for end users, such as unauthorized use and leak of data,
and privacy compromise, due to unreliability of providers and
some accidents. While, a lot of studies on secure, efficient
and flexible communications, storage and computation have
been reported [1]–[4]. For securing data, full encryption with
provable security (like RSA, AES, etc) is the most secure
option. However, many multimedia applications have been
seeking a trade-off in security to enable other requirements,
e.g., low processing demands, retaining bitstream compliance,
and flexible processing in the encrypted domain, so a lot of
perceptual encryption schemes have been studied as one of the
schemes for achieving a trade-off.

In the recent years, considerable efforts have been made
in the fields of fully homomorphic encryption and multi-
party computation [5]–[8]. However, these schemes can not
be applied yet to SVM algorithms, although it is possible
to carry out some simple statistical analysis of categorical
and ordinal data. Moreover, the schemes have to prepare
algorithms specialized for computing encrypted data.

Because of such a situation, we propose a privacy 　
preserving SVM computing scheme in this paper . We focus
on a block scrambling-based encryption scheme, which has

been proposed for Encryption-then-Compression (EtC) sys-
tems with JPEG compression to consider the safety [9]–[13].
So far, the safety of the EtC systems has been evaluated based
on the key space assuming the brute-force attacks, and the
robustness against jigsaw puzzle attacks has been discussed
[14]–[16]. In this paper, some new properties of templates en-
crypted by the encryption scheme are discussed under z-score
normalization. It is also shown that the properties allow us to
securely compute SVM algorithms without any degradation of
the performances, even when some useful kernel functions are
used. In addition, two key conditions are considered to enhance
the encryption. In an experiment, the proposed scheme is
applied to a face recognition algorithm with SVM classifiers
to confirm the effectiveness.

II. PREPARATION

A. Support Vector Machine

Support Vector Machine (SVM) is a supervised machine
learning algorithm which can be used for both classification
or regression challenges, but it is mostly used in classification
problems. In SVM, we input a feature vector x to the
discriminant function as

y = sign(ωTx+ b)

with

sign(u) =

{
1 (u > 1)

−1 (u ≤ 0)
,

(1)

where ω is a weight parameter, and b is a bias.
SVM also has a technique called the kernel trick, which is a

function that takes low dimensional input space and transform
it to a higher dimensional space. These functions are called
kernels. The kernel trick could be applied to Eq. (1) to map
an input vector on further high dimension feature space, and
then to linearly classify it on that space as

y = sign(ωTϕ(x) + b). (2)

The function ϕ(x) : Rd → F maps an input vector x on
high dimension feature space F , where d is the number of the
dimensions of features. In this case, feature space F includes
parameter ω (ω ∈ F ). The kernel function of two vectors xi,
xj is defined as

K(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩, (3)
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Fig. 1: Scenario

where ⟨·, ·⟩ is an inner product. There are various kernel
functions. For example, Radial Basis Function (RBF) kernel
is given by

K(xi,xj) = exp(−Υ∥xi − xj∥2) (4)

and polynomial kernel is provided by

K(xi,xj) = (1 + xT
i xj)

l, (5)

where Υ is a high parameter to decide the complexity of
boundary determination, l is a parameter to decide the degree
of the polynomial, and T indicates transpose.

This paper aims to propose a new framework to carry out
SVM with protected vectors.

B. Scenario

Figure 1 illustrates the scenario used in this paper. In
the enrollment, client i, i ∈ {1, 2, ..., N}, prepares training
samples gi,j , j ∈ {1, 2, ...,M} such as images, and a feature
set f i,j , called a template, is extracted from the samples. Next
the client creates a protected template set f̂ i,j by a secret key
pi and sends the set to a cloud server. The server stores it
and implements learning with the protected templates for a
classification problem.

In the authentication, Client i creates a protected template
as a query and sends it to the server. The server carries out
a classification problem with a learning model prepared in
advance, and then returns the result to Client i.

Note that the cloud server has no secret keys and the
classification problem can be directly carried out by using
well-known SVM algorithms. In the other words, the server
does not have to prepare any algorithms specialized for the
classification in the encrypted domain.

C. Template Protection

Template protection schemes based on unitary transforma-
tions have been studied as one of methods for cancelable
biometrics [17]–[21]. This paper has been inspired by those
studies.

A template fi,j ∈ Rd is protected by a unitary matrix having
randomness with a key pi, Qpi

∈ CN×N as,

f̂ i,j = T (f i,j , pi) = Qpi
f i,j , (6)

where f̂ i,j is the protected template. Various generation
schemes of Qpi

have been studied to generate unitary or
orthogonal random matrices such as Gram-Schmidt method,
random permutation matrices and random phase matrices [18],
[19]. Security analysis of the protection schemes have been
also considered in terms of brute-force attacks, diversity and
irreversibility. Protected templates generated according to Eq.
(6) have the following properties under pi = ps [19].

Property 1 : Conservation of the Euclidean distances:

∥f i,j − fs,t∥2 = ∥f̂ i,j − f̂s,t∥2.

Property 2 : Conservation of inner products:

⟨f i,j , fs,t⟩ = ⟨f̂ i,j , f̂s,t⟩,

.
Property 3 : Conservation of correlation coefficients:

⟨f i,j , fs,t⟩√
⟨f i,j , fs,t⟩

√
⟨f i,j , fs,t⟩

=
⟨f̂ i,j , f̂s,t⟩√

⟨f̂ i,j , f̂s,t⟩
√

⟨f̂ i,j , f̂s,t⟩
,

where fs,t is a template of another client s, s ∈ {1, 2, ..., N},
who has M training samples gs,t, t ∈ {1, 2, ...,M}.

III. PROPOSED FRAMEWORK

In this paper, we focus on block scramble-based image en-
cryption schemes, which have been proposed for EtC systems
[10]–[13], to generate protected templates. New properties
of the protected templates are discussed under some kernel
functions for SVM computing.

A. Block scrambling-based image encryption

In the Block scrambling-based image encryption scheme
[10]–[13]. an image with X×Y pixels is first divided into non-
overlapped blocks with Bx×By , then block-based processing
steps, as illustrated in Fig. 2, are applied to the divided image.
The procedure of the image encryption is given as follows:

Step1: Divide an image with X×Y pixels into blocks with
Bx × By pixels, and permute randomly the divided
blocks using a random integer generated by a secret
key K1, where K1 is commonly used for all color
components.

Step2 Rotate and invert randomly each block using a ran-
dom integer generated by a key K2, where K2 is
commonly used for all color components as well.

Step3: Apply the negative-positive transformation to each
block using a random binary integer generated by a
key K3, where K3 is commonly used for all color
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Fig. 2: Block scrambling-based image encryption

components. In this step, a transformed pixel value
in ith block Bi, p0 is computed by

p′ =

{
p (r(i) = 0)

255− p (r(i) = 1)
(7)

where r(i) is a random binary integer generated by
K3 under the probability P (r(i)) = 0.5 and p ∈ Bi

is the pixel value of an original image with 8 bpp.
Step4: Shuffle three color components in each block (the

color component shuffling) using a random senary
integer generated by a key K4.

The key space of the block scrambling-based image encryp-
tion is generally large enough against the brute-force attacks
[11]. Moreover, jigsaw puzzle solver attacks, which utilize the
correlation among pixels in each block, have been considered
[14]–[16]. It has been confirmed that the appropriate selection
of the block size and the combination of each encryption step
can improve the robustness of EtC systems against various
attacks. In this paper, images encrypted by the above steps
are referred to as EtC images.

B. Properties of EtC images

Let us consider some properties of EtC images. It will be
shown that generating EtC images is reduced to a unitary
transformation.
1) Without any normalization

In the encryption steps in Fig.2, block scramble, block
rotation and inversion, and color component shuffling are an
operation to permute pixels, so they are represented by using
a permutation matrix. For example a permutation matrix EBi

is give as

EBi =

1 0 0
0 0 1
0 1 0

 , (8)

where EBi has only one element of 1 in each row or each
column and others are 0 . EBi satisfies the relation,

I = EBi

TEBi (9)

where I is an identity matrix. Therefore EBi becomes an
orthogonal matrix.

The protected template f̂ i,j is computed by using EBi as,

f̂ i,j = EBif i,j . (10)

However, in the case of using negative-positive transforma-
tion, we can not obtain the above relation. When k th element

of f i,j is given as pi,j(k), the one of f̂ i,j is expressed as
255− pi.j . Then we can obtain the relation,

||(255− pi,j(k))− (255− ps,t(k))||2

= || − pi,j(k) + ps,t||2

= ||pi,j(k)− ps,t(k)||2. (11)

This relation shows that the Euclidean distance is preserved.
However, each component of the inner product is calculated
as

(255− pi,j(k)) ∗ (255− ps,t(k))

= 2552 − 255(pi,j(k) + ps,t(k)) + pi,j(k)× ps,t(k)

̸= pi,j(k) ∗ ps,t(k) (12)

Thus, the inner product is not preserved. Consequently, block
scramble, block rotation and inversion, color component shuf-
fling preserve inner products and Euclidean distance between
original images and EtC images, but negative-positive trans-
formation preserves only the Euclidean distance.
2) With z-score normalization

Next we consider the case of using z-score normalization
[22]. In z-score normalization, a value xi, i = 1, 2, . . . , N is
replaced with zi like

zi =
(xi − X̄)

S
, (13)

where X̄ is the mean value of the data and S is the standard
deviation,

S =

√∑N
i=1(xi − X̄)2

N
. (14)

In negative-positive transformation, Eq.(13) is given as

ẑi,j(k) =
(255− pi,j(k))− (255− P̄k)

S′

= −pi.j(k)− P̄k

S
= −zi,j(k) (15)

where

P̄k =
1

N ×M

N∑
i=1

M∑
j=1

pi,j(k) (16)

S′ =

√∑N
i=1

∑M
j=1((255− pi,j(k))− (255− P̄k))2

N ×M

=

√∑N
i=1

∑M
j=1(−pi,j(k) + P̄k)2

N ×M
= S. (17)

Eq.(15) means that a normalized value ẑi,j becomes the sign
inversed value of zi,j . A sign inversion matrix is a unitary
matrix, so the inner product is preserved. Hence, in the case
of adopting z-score normalization to EtC templates, negative-
positive transformation, in addtion to block scramble, block
rotation and inversion, and color component shuffling, allows
us to keep the inner products.
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C. Classes of kernels
We consider applying the protected templates to a kernel

function. In the case of using RBF kernel, the following
relation is satisfied from property 1 and Eq.(4)

K(f̂ i,j , f̂s,t) = exp(−Υ∥f̂ i,j − f̂s,t∥2)
= K(f i,j , fs,t) (18)

A stationary kernel KS(xi−xj) is one which is translation
invariant:

K(xi,xj) = KS(xi − xj), (19)

that is, it depends only on the lag vector separating the two
vectors xi and xj . Moreover, when a stationary kernel depends
only on the norm of the lag vectors between two vectors, the
kernel KI(∥xi−xj∥) is said to be isotropic (or homogeneous)
[23], and is thus only a function of distance:

K(xi,xj) = KI(∥xi − xj∥). (20)

For examples, RBF, WAVE and Rational quadratic kernels
belong to this class, i.e, isotropic stationary kernel, called
kernel class 1 in this paper. If kernels are isotropic, the propose
scheme is useful under the kernels.

Besides, from property 3, we can also use a kernel
KIn(⟨xi,xj⟩) that depends only on the inner products be-
tween two vectors given as

K(xi,xj) = KIn(⟨xi,xj⟩). (21)

Polynomial kernel and linear kernel are in this class, referred
to as class 2.

Some kernels such as Fisher and p-spectrum ones, to which
the protected templates can not be applied, belong to other
classes. We focus on using kernel class 1 and class 2.

D. Dual problem
Next, we consider binary classification that is the task

of classifying the elements of a given set. A dual problem
to implement a SVM classifier with protected templates is
expressed as

max
α

−1

2

∑
i,s∈N
j,t∈M

αi,jαs,tyi,jys,t⟨ϕ(f̂ i,j), ϕ(f̂s,t)⟩+
∑
i∈N
j∈M

αi,j


s.t.

∑
i∈N
j∈M

αi,jyi,j = 0, 0 ≤ αi,j ≤ C,

(22)

where yi,j and ys,t∈ {+1,−1} are correct labels for each
training data, αi,j and αs,t are dual variables and C is a regular
coefficient. If we use kernel class 1 or class 2 described above,
the inner product ⟨ϕ(f̂ i,j), ϕ(f̂s,t)⟩ is equal to K(f i,j , fs,t).
Therefore, even in the case of using protected templates, the
dual problem with protected templates is reduced to the same
problem as that of the original templates. This conclusion
means that the use of the proposed templates gives no effect
to the performance of the SVM classifier under kernel class 1
and class 2.

(a) person1 (b) person2

Fig. 3: Examples of Extended Yale Face Database B

(a) template (b) protected

Fig. 4: An example of protection

E. Relation among keys

As shown in Fig 1, a protected template f̂ i,j is generated
from training data gi,j by using a key pi. Two relations among
keys are summarized, here.
1) Key condition 1: p1 = p2 = ... = pN

The first key choice is to use a common key in all clients,
namely, p1 = p2 = ... = pN . In this case, all protected
templates satisfy the properties described in II-C and III-B,
so the SVM classifier has the same performance as that of
using the original templates.
2) Key condition 2: p1 ̸= p2 ̸= ... ̸= pN

The second key choice is to use a different key in each
client, namely p1 ̸= p2 ̸= ... ̸= pN . In this case, the three
properties are satisfied only among templates with a common
key. This key condition allows us to enhance the robustness
of the security against various attacks as discussed later.

IV. EXPERIMENTAL RESULTS

The propose scheme was applied to face recognition exper-
iments which were carried out as a dual problem.

A. Data Set

We used Extended Yale Face Database B [24] that consists
of 2432 frontal facial images with 192×168-pixels of N = 38
persons like Fig. 3. 64 images for each person were divided
into half randomly for training data samples and queries. We
used block scrambling-based image encryption, which consists
of block scrambling, block rotation and inversion, negative-
positive transformation, and color component shuffling steps,
to produce protected templates. Besides, RBF kernel and linear
kernel were used, where they belong to kernel class 1 and class
2, respectively. The protection was applied to templates with
1024 dimensions generated by the down-sampling method
[25]. The down-sampling method divides an image into non-
overlapped blocks and then calculates the mean value in each
block. Figure 4 shows examples of an original template and
the protected one. In the experiment, z-score normalization
was applied to all templates after the encryption.
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B. Results and Discussion

In face recognition with SVM classifiers, one classifier is
created for each enrollee. The classifier outputs a predicted
class label and a classification score for each query template
f̂q , where f̂q is a protected template generated from the
template of a query, fq . The classification score is the distance
from the query to the boundary ranging. The relation between
the classification score Sq and a threshold τ for the positive
label of fq is given as

if Sq ≥ τ then accept; else reject. (23)

In the experiment, False Reject Rate (FRR), False Accept Rate
(FAR), and Equal Error Rate (EER) at which FAR is equal to
FRR were used to evaluate the performance.
1) p1 = p2 = ... = pN

Figure 5 shows results in the case of using key condition 1.
The results demonstrate that SVM classifiers with protected
templates (protected in Fig 5) had the same performances
as those fo SVM classifiers with the original templates (not
protected in Fig 5). From the results, it is confirmed that the
proposed framework gives no effect to the performance of
SVM classifiers under key condition 1 and z-score normaliza-
tion.
2) p1 ̸= p2 ̸= ... ̸= pN

Figure 6 shows results in the case of using key condition
2. In this condition, it is expected that a query will be
authenticated only when it meets two requirements, i.e. the
same key and the same person, although only the same person
is required under key condition 1. Therefore, the performances
in Fig. 6 were slightly different from those in Fig. 5, so the
FAR performances for key condition 2 were better due to the
strict requirements.
3) Unauthorized outflow (p1 ̸= p2 ̸= ... ̸= pN )

Figure 7 shows the FAR performance in the case that a key
pi leaks out. In this situation, other clients could use the key
pi without any authorization as spoofing attacks. As shown in
Fig.7, the FAR (key leaked in Fig.7) still had low vales due to
two requirements, although it was slightly degraded, compared
to Fig.6.

Figure 8 is the FAR performance in the case that a template
f i,j leaks out. It is confirmed that the FAR (template leaked
in Fig.8) still had low vales as well as in Fig.7.

From these results, the use of key condition 2 enhances the
robustness of the security against spoofing attacks.

V. CONCLUSION

In this paper, we proposed a privacy-preserving SVM com-
puting scheme with protected templates. It was shown that
block scrambling-based image encryption, which has been pro-
posed for EtC systems, is reduced to a unitary transform under
the z-score normalization. It was also confirmed that templates
protected by the encryption has some useful properties, and
the properties allow us to securely compute SVM algorithms
without any degradation of the performances, even when some

(a) Linear kernel (C = 1)

(b) RBF kernel (C = 34, Υ = 81)

Fig. 5: FAR and FFR (p1 = p2 = ... = pN )

Fig. 6: FAR and FAR (RBF kernel, p1 ̸= p2 ̸= ... ̸= pN )

useful kernel functions are used. Besides, two key conditions
were considered to enhance the robustness of the security
against various attacks. Some face-based authentication ex-
periments using SVM classifiers were also demonstrated to
experimentally confirm the effectiveness of the proposed frame
work.
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Fig. 7: FAR with leaked keys (RBF kernel)

Fig. 8: FAR with leaked original templates (RBF kernel)
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