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Abstract—Nonlinear blind source separation is the process
of estimating either the original signals or mixture functions
from the degraded signals, without any prior information about
original sources. The key idea is to recover the sources by
estimating an approximation function so as to approximate the
inverse of mixing function. However, in practice, the approx-
imation function is derived from some estimation algorithm
with finite sample size, which leads to the performance loss.
In this paper, we work on the convergence and asymptotic
analysis of the separation approach, which uses the flexible
approximation to extract the nonlinearity of mixture function so
that to make the problem linearly separable. The analysis stems
from the performance of a mismatched estimator that accesses
the finite sample size. By providing a closed-form expression of
normalized mean squared error (NMSE), we can present a novel
algebraic formalization that leads to the upper bound on the
estimation error. The simulation results show that if the flexible
approximation can extract the nonlinearity of mixing functions,
the minimized NMSE can be achieved as the sample size tends to
be infinity. This implies that the algorithm is feasible to separate
the distortion of the nonlinear mixture.

I. INTRODUCTION

The purpose of independent component analysis (ICA) and
blind source separation (BSS) [1], [2], [3], is to extract m
mutually independent elements from n observed mixtures. Let
us consider the following linear instantaneous mixing system
with m inputs and n outputs as

x(t) = As(t),

where s(t) = [s1(t),s2(t), -+, sm(t)]T are the signals with
m channels, s;(t) denotes the sample of the i-th source at
time index t. x(t) = [z1(t),z2(t), - ,z,(t)]T denotes the
observed mixtures with n channels, which is assumed to be
generated by n x m mixing matrix A and source signals s(t).
Commonly, the separation process of ICA is conducted on
the assumption that the sources are statistical independent. For
a linear mixing model, if the number of sources equals to the
number of channels (m = n), the demixng matrix W can be
defined as W = A~!. The recovered signals are represented
as §(t) = Wx(t). The linear BSS aims at estimating W and
recovered signals §(¢) using only the observed signals x(¢).
An obvious extension for the task of BSS is that the
observed signals are assumed to be generated from a set of
sources by a nonlinear, instantaneous and invertible function
F, ie., x(t) = F(s(t)) for all t = 1,---,T. Roughly, the
nonlinear blind source separation seeks to find the mixing
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function (or its inverse function G = F~1), solely based on
the assumption that the sources are statistically independent.
However, the indeterminacies imposed by the nonlinear model
are difficult to handle [4], [5]. The obstacle for the nonlinear
BSS problem is that solutions are non-unique without extra
constraints [6]. The recovery inconsistency has been tackled
by adding further prior information directly in the model or as
a regularization term in the optimization processing procedure.

Most nonlinear algorithms utilize single approximation to
extract the nonlinearity, such as the multi-layer perceptron
(MLP) in the neural network [7], [8], which is employed
for estimating the nonlinear separation function. By restricting
the smoothness of the target transforming, MLP provides the
regularized solutions to ensure that nonlinear ICA leads to
the sources separable. However, the example presented in [9]
shows that the smoothness property is not a sufficient condition
for this purpose. Hyvérinen and Pajunen [6] show conformal
mapping may helpful. Nonlinear ICA is able to estimate a
separation mapping up to the rotation when the mapping
functions are restricted to the set of conformal mapping.
Unfortunately, the angle preservation conditions seem very
restrictive [10]. In particular, it is not realistic in the framework
of the nonlinear mappings associated to the nonlinear sensor
array.

A novel approach named as Vanishing Ideal based Non-
Linear SEparation Model (ViNLisem) was proposed in [11],
which relies on a novel mathematical construction with multi-
layer architecture. By considering a situation where a set of
flexible approximations are utilized to extract the nonlinearity,
the approach breaks a nonlinear distortion down into the
version of the linear case in the feature space.

Nevertheless, the approximation function are generated
adaptively depend solely on the input data, then the function
and its empirical counterpart that is assumed to be derived
by the estimation algorithm with the finite sample size could
differ, which is said to be mismatched or misspecified. Ex-
perience with real data often exposes the limitations of any
assumed model, since modeling errors at some level are
always present. Therefore, understanding the possible perfor-
mance loss that the separation algorithm subject to model
misspecification is of practical interest and critical. In this
paper, we work on the convergence and asymptotic analysis
of an approximation function, so that propose an analytical
expression of performance measure.
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A. Our Contribution

This paper provides a theoretical analysis to ViNLisem
algorithm [11], which includes the closed-form expressions on
normalized mean squared error (NMSE), as well as proposing
a new algebraic formalization that leads to the upper bound on
the performance loss. The analysis stems from the performance
of a mismatched estimator that accesses the finite sample size,
which is explored by two parts. One is to derive an iterative
expression of the coefficient matrix. Another part aims to
establish a closed-form expression of discrepancy between the
truth model and its counterpart.

Using Maximum Likelihood (ML) estimation, the coeffi-
cient matrix is modeled as deterministic but depend on the
data. By maximizing the likelihood function, the convergence
point of the maximum likelihood estimator could be inter-
preted as the stationary point that minimizes Kullback-Leibler
(KL) divergence between the truth model and the approx-
imated expression. Then, the natural gradient of likelihood
function is utilized to obtain an optimal solution, which is
propagated to yield the component of NMSE estimation.

Then, we establish a closed-form expression of discrepancy
between the truth covariance and its counterpart. A major
focus is on the derivation of the estimation of covariance
matrices, which can be treated exactly or approximately as an
estimation of a finite or infinite sample size. Thus, the spectral
norm utilized to obtain the upper bound under a range of
matrix operator norm and divergence losses, as well as solving
the non-parametric function mis-specification problems with
finite sample size.

The rest of the paper is organized as follows. In Section
2, we introduce the separation model, which is denoted as
ViNLisem. Then the problem formulation is given mathe-
matically. An iterative expression of the coefficient matrix is
presented in Section 3. Section 4 aims to establish a close-form
expression of discrepancy between the truth covariance and its
counterpart. Some simulation experiments are carried out to
corroborate the theoretical results in Section 5. We conclude
the paper in Section 6.

II. MODEL AND PROBLEM FORMULATION

The nonlinear BSS problem is formally described as fol-
lows. The observed mixture x(t) = [x1(t), z2(t), - , xn ()] T
is assumed to be generated from a set of statistically indepen-
dent sources s(t) = [s1(t),s2(t),- -+ ,5,(t)]T by a nonlinear,
instantaneous and invertible function as

x(t) = F(s(t)), t=1,---,T, 2)

where {-}T denotes the transpose, and ¢ is the sample (time)
index. This process can be described on the left-hand side of
Fig. 1, which is denoted as a mixing-separating system.
However, without any extra constraints for mixing function,
the solutions are non-unique [6]. The approach in [11] was
proposed to tackle the ill-posedness with a few assumptions.
By utilizing a flexible approximation to extract the nonlinear-
ity, the distortion of mixing functions can be transformed into
the version of the linear case in the feature space. This process
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Fig. 1: The mixing-separating system of the nonlinear blind
source separation. The block F are generic nonlinear functions
that lead to a mixture process. The observed signals are x(t),
which are assumed to be generated from source signals by a
nonlinear mixing function. The G block in the demixing pro-
cess, implementing a flexible approximation, as the auxiliary
function is used to extract the nonlinearity of mixing functions.
Thus, the projected signals ¢(¢) can make the problem linearly
separable. The block W is a coefficient matrix, performing a
linear operator that derive the estimator of original signals
from the projected signals.

JLATE,

s(t) x
»| J’.’

Source
signals

30

Recovered
signals

\U%

Auxiliary
function

8(1) = Wlt)

described on the right-hand side of Fig. 1, which is denoted
as a demixing system.

Given a set of auxiliary functions that allowed us to con-
struct the nonlinear variants by some vanishing polynomials,
such as g1(x(t)),--- ,gx(x(t)) € G, where g;(x(t)) is i-
th vanishing polynomial that the observed signals x(t) are
mapped implicitly into some feature space ® : R* — RF,
i.e., ¢;(x(t)) represents the projected value from polynomial
$i(x(t)) = g;(x(t)). The feature space is spanned from such
polynomial functions that enable us to work on G. Thus, the
projected data in the feature space lead to a linear combination
for the demixing process

§;(t) = Z Wi (x(t)), 3)

where W;; denotes the (j,i)-th element of the coefficient
matrix W. ¢;(x()) is the model assumed to derive the
estimation under the finite samples size, denote as ¢A>,(t) for
short.

In this paper, we work on a theoretical analysis of the
proposed separation model [11] as described in Fig. 1, so that
measure the quantities of the recovered signals. In other words,
the problem consists in estimating §(¢) to given a closed-form
expression for normalized mean squared error (NMSE), as
well as proposing a new algebraic formalization that leads
to the upper bound.

First, normalized mean squared error (NMSE) as the figure
of merit is used to recovered signals §(¢) by

S
NMSE £ 7 2 180 = sl
t=1
1 =[x 2
= HWq&(t)—Wd)(t)HF, “
t=1
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where || - ||% denotes the Frobenius norm, ie. ||[A[%Z =
tr{AAT}.

Since we assume that the coefficient matrix W is fixed,
which only depend on the observed mixture. The theoretical
analysis only considers the discrepancy from such polynomials
¢(t) that derived from the finite data points. We thus begin
by defining a convenient error term. In order to focus on well-
defined quantities, we consider the error

8s(t) = B(t) — B(1), (5)

where ¢(t) is true data model and ¢(t) is the model assumed
to derive the estimation under the finite samples size. Thus
NMSE can be rewritten as

T

— 1

NMSE = > W, )l
t=1

= Dt (W13, () W}

t=1

=tr {WZ;, W'}. (6)

The second equality used the definition of Frobenius norm.
In the third equality, the results derived from the definition of
empirical counterpart X5, = 7+ Zthl 8s(),(t) 7.

Without loss of generality, we assume that the original
source s(t) is independent of s(¢') for all ¢ # ¢'. For any
t, s(t) has the zero vector mean and the covariance matrix is
3. For projected signals ¢(t), the linear model (3) implies
the relation that

S, =WEZ,W', @)

where X is the covariance matrix of ¢(¢). The corresponding
empirical counterpart is defined as

1>
]

LS st @®)

t=1

R

The objective of BSS is to recover s(¢) from the mixture
x(t) so that its correlation satisfies 3, s, 2 E[Z,, ] =
0,,xn for i # j. However, due to the finite sample size, it does
not hold for its empirical counterpart, i.e. Z_]s“sj # Opxn- In
this paper, the coefficient matrix W is assumed to be given,
thus the linear model (3) implies the relation of covariance
matrices 3y = WX, W~ and their empirical counterpart
3, = WX, W~ . The notation is denoted as W~ = W1
for simple expression using the following content.

In practical, only the samples of finite size is available that
lead to NMSE of (6) under an empirical counterpart. The
corresponding representation under the infinite size can be
obtained by approximating the mathematical expectations with
the sample means, which is given by

NMSE £ E{NMSE}

=tr {%;,Cov(W)} +0 ( ©)

Vi)
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The detail derivation can be found in Appendix A. The
objective of this paper is to access the performance of the
mismatched estimator, as well as proposing a formalization to
the performance loss. This can be formulated by a contrast
function.

Problem 1. Given a set of projected data ¢(¢) that is a fixed
point from the theoretical model. If its empirical counterpart
has an almost surely foxed point (ﬁ(t) that is a neighborhood of
¢(t). Then the problem is to learn an algebraic formalization
that leads to the upper bound of the following equation

|NwSE — 1\1/1\@EH2 = ||tr{ (S5, — Bs,)Cov(WN}Y|,
(10)

where 35, is covariance matrix of 04 and s , 1s the corre-
sponding counterpart. O

Problem 1 implies that if we present a closed-from expres-
sion on NMSE, the performance loss of recovered sources
can be minimized approximately by reducing the discrepancy
between the 35, and its empirical counterpart. In other words,
(]3(15) is expected to extract the nonlinearity of the mixing
function so as to the NMSE can be minimized as the sample
size tends to be infinity.

The performance analysis of (10) can be concluded from the
derivation of two parts. One is to derive an iterative expression
of the coefficient matrix W that to be estimated are modeled
as deterministic but depend on the data. The details derivation
are described in Section 3. Another part showed in Section
4 aims to establish a closed-form expression of discrepancy
between the truth model and its counterpart under the finite
sample size.

III. ESTIMATE COEFFICIENT MATRIX W

We now turn to estimate coefficient matrix W of (10),
which lead to an iterative expression of coefficient matrix W.
The analysis first focus is on the result of the behavior of the
iterative solution of ML estimation.

A. Maximum-Likelihood (ML) Estimation

Given the source signals {s(t)}7_; that are assumed to be
drawn independently from a multivariate Gaussian distribu-
tion. We thus can estimate the nuisance parameters by ML
estimation. The log-likelihood function is given by

logp ({s(t)}{L1) = log [ [ p(s(t)) (1)

=1
T
T 1 nT
=—=1 29—72 TS7s(t) — — log 2m.
5 og det(Xs) 5 s(t) ' 27 s(t) 5 log2m

where det(X,) indicates the determinant of X,. The first
equality comes from the assumption of independence of
sources s(t) and s(¢') for ¢t # t'. The second equality follows
the Gaussian distribution with the zero vector mean and the
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covariance matrix is 3¢. The above equation can be rewritten
by using trace trick

logp ({s(t)}i=1)

T 1 & nT
= — 5 logdet(Z,) — 5 ;tr (=;st)s(t)T) - 5 log2m

T T = T
= ——logdet(X;) — Etr {2} - %log%r

2
T det(S) T e o

-4 VNS 10 >h S
2 %8 det(,) 5T {3:3,} —m

12)

where r1 = —Z logdet(E,) — %L log 27 denotes the term,
which is irrelevant to the maximization of the likelihood with
respect to its parameter. The results of the first equality are
from the property a' Za = tr{Zaa'} for any vector a
and matrix ¥ with appropriate dimensions. Then, using the
definition of an empirical counterpart in (8) and the property
of tr{AB} = tr{BA}, we have the second equality. To obtain
a similar form with Kullback-Leibler divergence in Definition
1, the third equality is a derivation of a simple operation.

Definition 1. Let ¥; and ¥, be two n X n positive defi-
nite matrices. The Kullback-Leibler divergence KL(X1|/X2)
measures the difference between two multivariate normal
distribution N'(0,%1) and N(0, X5), which is given by

1 _ det(El)
KL(Z1[|X:) = = [ tr{Z1325} -1 — . (13
(2112a) = 5 (=25}~ tos Gz 0. 13
We set ¥; = X, and ¥, = X,. Using the definition of
Kullback-Leibler divergence as a measure to two matrices,
then the log-likelihood of (12) can be rewritten as

logp ({s(}L1) = ~TKE(S, R - "~

= -TKLWE;WT|Z)) + k2,  (14)

where ky = —Z logdet(2,) — %L log2r — 2L denotes the
term which is irrelevant to the maximization of the like-
lihood with respect to its parameters. The stationary point
of Kullback-Leibler divergence in (14) leads to the way for
estimating the covariance matrix 3.

B. Estimate 34 for Fixed W

To analyze 2¢, we fix the coefficient matrix W first. Thus,
maximizing log-likelihood (12) is equivalent to minimizing the
Kullback-Leibler, which is given by

max logp ({s(t)}{_1]|Zs, W) = Iréin KL(WE,W | Zy).

(15)
To derive an estimator 2_]¢ for fixed W, the definition of
Kullback-Leibler in (13) can be rewritten in the form as

1 1
’CE(ElHEQ) = 5(}1‘{2122_ - I} - 510gd6t(2122_)
1 _1 1 1 1 1
= {758, 1) - logdet(S, T 518, %)

- %tr{’R 1 %log det(R). (16)
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We note that the fact, for a positive-definite matrix R,
tr(R —1I) is an upper bound for log det R, which is attained
if and only if R is the identity. This follows immediately from
the inequality log z < x—1 which is valid for all x > 0. Thus,
the equality has the minimization value if and only if z = 1.

Therefore, minimizing the right-hand side of (15) can be
understood as diagonalization of covariance matrix 2¢ by
matrix W. Since we assume the source signals s(¢) are
independent of s(t') for any ¢ # t/, then we have the
covariance matrix X, o = Opx, for ¢ # j. That is,
KL(WZ4WT||2,) > 0 is satisfied with equality if and only
if ZML = diag{WX,WT}, where diag{-} is the operator
of the diagonalization. Then (15) takes the form

maxlog p({s(t)}i—1|Zs, W)
= —TKL(diag{WEZW "} Z,) + Ko, (17)

where kg = — % log det(X,) — % log 27 — % is an irrelevant
term with respect to the parameter. 33, is empirical counterpart
that can be determined by the data.

C. Estimate W for Fixed X

Now let us consider to estimate the coefficient matrix W by
characterizing the optimal solution of the log-likelihood (17).
For this purpose, we calculate the derivative of the likelihood
function J(W, ;) = logp({s(t)}1_,|Xs, W) with respect
to W for fixed 3. Assume that we are at the point W and
wish to find a direction for a small matrix increment § W such
that the value in

T(W + W, 5,) = CLWEW T [[20) [y _wisw (18)

is minimized under the constraint that the squared norm
|SW|? is constant. This is a natural requirement, as any
step in a gradient algorithm for minimization must consist of
the direction of the step and the length. Keeping the length
constant, we search for the optimal direction.

Let us require that the displacement W is always propor-
tional to W itself, ’W = DW. We thus have the Taylor
series of J(W + DW) that be expressed by

JW(I+ D)X, =J(W,X,)
+tr {(VJ(W,%,)) ' D} + O(DW) (19)

The multiplier for D or matrix V.7 (W, ;) is called the
natural gradient. It is the usual matrix gradient multiplied by
wT.

The largest decrement in the value of J(W(I +
D) — J(W) is now obviously obtained when the term
tr{VJ(W,Z,)WT)TD} is minimized, which happens
when D is proportional to —V.7 (W, ZJS)WT. The natural

gradient algorithm has the form
W W-VI(W,Z)W'W, (20)

where the symbol <— means substitution, i.e., the value of the
right-hand side is computed and substituted on the left-hand
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Algorithm 1 Estimate coefficient matrix W using iterative
procedure.

Initialization: Choose initial estimations W(® and 220) =
diag{W O Z (W) T,
I: for t =1 do
2: Calculate X from
2 = diag{WE-DE,(WE-D)T}
3: Update W using
W) — [21 13T 4+ 3, Wi
Check for convergence
if [W® — WD) < ¢ then
Break
else
t=t+1
10: end if
11: end for

D A

side. The natural gradient update of the coefficient matrix is
given by
1

—VIW,Z)WTW = [I- -2 (Z] +2,)| W.

3 @n

Additionally, using natural gradient updates have a faster
convergence. The iterative procedure to obtain the coefficient
matrix W can be described in algorithm 1.

IV. THE ESTIMATION FOR COVARIANCE MATRIX

In this section, we establish a closed-form expression of
discrepancy between the covariance matrix 35, and its coun-
terpart under the finite sample size.

Theorem 1. Let X , be an estimator of the k x k covariance
matrix s, on the finite sample size. For the constants
Cq,Csy > 0, we have

_ log k 20
B[S, -2 |f <P B v a2 (B) 7, @)

where m is the range of non-zero elements in the blocks and
parameter « specifies the rate of decay for the elements of
covariance as they move away from the diagonal. p is an
arbitrary integer with 1 < p < k. O

The above problem can be analyzed by separating as bias
part and variance part in terms of

E||Zs, — s, 17 < |IE[Zs,] — s, I +ElIZs, — E[Z5,]]1°

bias variance

(23)

In the remainder of this section, we shall derive approximate
expressions for the bias and variance respectively, and use
these to investigate how the NMSE will behave.
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A. The Analysis of Bias Part

We first prove the risk upper bound for the bias part.
The derivation of the procedure is inspired by the idea of
convergence bound under the spectral norm.

The bias part of the analysis is almost identical to spectral
norm and matrix of bounded that is almost identical to [12].

Definition 2. Let p(A) be a spectral radius of A. If A €
RF*E i a symmetric matrix with eigenvalues A1, - - - , A\, then
lA|l2 = p(A) has a definition as

1Al = p(A) := max {[Ail}. 24
Definition 3. For any matrix A € R¥** be a square matrix
of size k x k. The matrix norm ||A| is defined by ||A| :=

k
1%12(1@ Zj:l |ai;].

Theorem 2. For a symmetric matrix A € RF** Jts | A||y is
bounded by matrix norm in the terms of

1<i<k (25)

k
IAll2 < A = max > |ail-
j=1
Proof: Assume ); is an arbitrary eigenvalue of matrix A
and v; is its corresponding eigenvector. Then we have

ill[vill = [[Aivill = AVl < JAJ[[[vell. - (26)

Since v; is a non-zero vector ||v;|| # 0, then |\;| < [|A].
Since \; is an arbitrary eigenvalue, then we have p(A) <
[[A]]1- u
This result is considered to be used for a convergence of
the bias part in (23), E[£;,] — X5, by its /; norm.
Considering infinity sample size, the convariance matrix
335, is defined by

s, = (0ij)1<ij<i = E [85(1)85() "],

where o;; is the element of the convariance matrix. Since the
data points are finite in practice, the definition of empirical
counterpart using the estimator is given by

[
@27

T

_ 1

s, = Wijoij)ixk = 7 > 0s(t)ds(t)",  (28)
=1

where the w;; is weight. Without loss of generality, the weight
w;j can be defined as

1, when li—jl <%,
2—@, when § < |i — j| < p,
0, otherwise.

(29)

wij =

where p is an arbitrary integer with 1 < p < k. As noted in
[13], the estimated covariance matrices Xy = [045]1<i,j<k
can be considered over the following parameter space.

{2 smax >~ {fog i - | = g} <y (g)w } (30)
J

where C; > 0 is a constant and p is an even integer with
1 < p < k. The parameter o essentially specifies the rate
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of decay for the covariances o;; as they move away from
the diagonal, can be viewed as an analog of the smoothness
parameter in non-parametric function estimation problems.

Thus, the bias part E[E%] — X5, can be expressed in the
form of

E[ié(ﬁ] =35, = ((wij — 1)oij) g »

where w;; € [0,1]. Since the operator norm of a symmetric
matrix is bounded by its [y norm, in which w;; = 1 when
li —j| < &, then

€1y

2
0551 - 2 < | s 3l — ) |
J

2
< -
—[%ﬁ 2 Mﬂ
T pli=i>%
P —2a
<02 (5) . 32)

B. The analysis of variance part

Next, we consider the upper bound of the variance part. This
paper uses the tapering estimator of the covariance matrix as
in [13]. The derivation of the idea is inspired by chernoff
bounds. The approach write a matrix as a sum of many small
block matrices along the diagonal, where the block matrices
are given by

M = oy Q< i <l+ml<j<ltm)),, (33

where Q{l < i <l+m,l < j <1+ m} is an indicator that
assigns the value one to the elements in this range of matrix.
Without loss of generality, we assume that & is divisible by
m. By setting S(™ as §(m) = ¢ Ml(m), the tapering
estimator can be written as

ﬁ:((;m) _ L(S(m) _ S(mh))7 (34)
@ mp

where mj, = 7. The performance of the estimator 2((;:1)

depends on the choice of parameter m. From the above

equation, we can see that the estimation ﬁ)g:) can be written

as the sum of a large number of small disjoint block matrices.

Lemma 1. Let 25{;1) be an estimator, which is defined in (34).
Then we have

=5 — B2 < mar, (35)
where N = maxy <<, [M™ — E[M{™]]]. O

Lemma 2. Assume the distribution of ¢(z;) is sub-Gaussian
in the sense that there is p > 0 such that

P{lv" (¢(xi) — Elp(x:)]) | > t} < exp(~2p/2),

where ¢t > 0 and ||v||2 = 1. Then there is a constant p; > 0
such that

(36)

P{M(m) > 0} < 2k5™ exp(—nap), 37

foral0 <z <prand 1 —m <[ <p.
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(a) Source signals (b) Mixture signals

Fig. 2: The scatter plots of the source signals and mixture
signals. (a) The source signals use the “CHiME3” dataset in
TABLE 1. (b) The mixture signals are nonlinearly mixed by
PNL mixture function.

Thus, set x = \/logk%. Since x is bounded by 0 < z <

p1, then we have HXA)((;ZL) — ]E[ﬁlgzl)] || is bounded by a constant
as

(38)

|56 - w2 < cplekEm

V. SIMULATION RESULTS

In this section, we present some illustrative examples to
demonstrate the validity of the computed bounds.

A. Data and Evaluation Equation

The source signals used for the following simulations in-
clude four real-world audio data. They are publicly available
[14]. Each one has its own advantages, depending on whether
one is interested in a variety of environments, in a number of
data points, or in the overlap. For instance, the data “AMI” has
two kinds of sound from the cable news and network news.
Another data “Multitrack” was mixed with two anonymous
singers. The length of the samples was varied to assess how the
amount of data affects the performance of the algorithm. The
general properties of the datasets are summarized in TABLE
1.

These source signals are nonlinearly mixed by the post-
nonlinear mixture (PNL), which was used in [9], [10].

The post-nonlinear mixtures constitute a particularly inter-
esting example with the theoretical separability characterized
by weak indeterminacy. The sources were the first subject to
a linear mixture z(t) = As(t), where A is a 2 X 2 mixing

matrix
A= (

Then each mixture component is generated from a nonlinear,
invertible transformation, as the form of

—0.2261

~0.1189
~0.1706 ) ' 9

—0.2836

21(t) = (22(t) + 321(t) + 6) cos(1.5m)z (£),

x2(t) = (22(t) + 321(t) 4 6) sin(1.57) 21 (). (“40)

The sources are plotted in Fig. 2: (a). The mixture components
are shown in Fig. 2: (b), where we can see the distortions
caused by the nonlinearities.
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TABLE I: Descriptions of real-world data [14].

Name Scenario  Duration(s)  Sample Size  Overlap
AMI! News 6 50,000 yes
CHiME3? Talker 6 50,000 yes
Nonspeech® TV order 10 160,000 no
Multitrack* Theater 147 6,482,701 yes

To measure the performance of recovered sources, the
normalized mean squared error (NMSE) was used [15], which
has the definition

NMSE(s;, ;) = 101 T~ o Isi=osiidy
(s:,8:) = 10logy n Zm(;m ISi 2 , (4D
i=1 2112

where §; denotes the estimation of the source signal s;, and 0
is a scalar reflecting the scalar ambiguity.

In addition, parameter determination is still an open problem
[16]. The closed-form expressions of NMSE in (22) depends
on the choice of parameter. We determine the parameter
a = 0.1 and other parameters are empirically determines as
in traditional approaches [13].

B. Experiment Description and Results

Example I: In this example, the numerical results show the
convergence behavior of the iterative procedure to derive the
coefficient matrix W. The details are described in Algorithm
1. The choice of the threshold e determines the convergence
rate, in terms of an effective iterative time. As a general rule,
a large threshold e is preferred during the learning to promote
the fast convergence. In contrast, a small € is suggested as
convergence to minimize variance. The iterative procedure is
performed under the threshold varies from 1076 to 10~2 by
a step of 107!, The evaluation metric has been shown in
(41). To reduce the randomness effect, 100 times Monte Carlo
simulations are performed to evaluate the bound on NMSE for
recovered sources shown in Fig. 3.

As seen from the appearance in Fig. 3, the objective is
to show the theoretical NMSE changed during the iteration.
The number of iteration is determined when the stopping
threshold is achieved. The curves are labeled with the signal-
to-noise power ratio (SNR) in decibels. As illustrated in this
figure, the asymptotic closed-form expressions of NMSE are
pertinent from threshold values. Thus, the divergence between
two consecutive coefficient matrices W converges to threshold
of approximately zero, which means that the final results will
not be changed drastically. Besides, the asymptotic conditions
are reached fast even for a small threshold.

Example 2: This example contains the comparison of ex-
perimental and theoretical performance on three kinds of real-
world data with different noise intensities. We fixed threshold
as € = 10~ that implies a much higher stopping criterion

Uhttps://research.ics.aalto.fi/ica/newindex.shtml
2http://laslab.org/SpeechSeparationChallenge/
3http://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/HuCorpus.html
“http://www.cambridge-mt.com/ms-mtk.htm
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107 1078
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Fig. 3: The bound on NMSE of estimated signals versus of
different values of threshold e. The top figure uses “AMI”
dataset. The bottom figure uses “CHiME3” dataset. Both of
them are nonlinearly mixed by PNL mixture function.
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102 108 104 10°
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Fig. 4: The performance of experimental NMSE and theoreti-
cal bound versus of different SNR intensities. The dash-dotted
line represents the theoretical curve. The dashed line represents
the experimental curve.

between two consecutive coefficient matrices. Both algorithm
performance and theoretical bound are performed under dif-
ferent SNRs, which varied from 5 dB to 45 dB by a step of 10
dB. One of the expected outcomes is the curve of NMSE that
tends to track the curve of bound even the SNR changed. We
keep other parameters the same as in Example 1. We repeated
20 trials and averaged results.

The curves are labeled with different dataset, such as
“AMI”, “CHiIME3” and “Nonspeech”. The experimental and
theoretical performance are marked as dash-dotted line and
dashed line, respectively. As we can see from Fig. 5, the gap
between the experimental result and theoretical result becomes
smaller when the values of SNR is much higher. That is, the
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Fig. 5: The convergence behavior of NMSE versus the sample
size.
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experimental result follows the trends of the theoretical result
more faithfully.

Example 3: In order to show the convergence behavior, this
example compares the experimental and theoretical perfor-
mance versus of the sample size when the threshold is set as
e = 10™%. The curves are labeled with the noise level that is
kept constant at 15 dB and 25 dB, respectively. The evaluation
metric has been shown in (41). To reduce the randomness
effect, 20 times of Monte Carlo simulations are performed to
evaluate the experimental and theoretical performance versus
of sample size.

In Fig. 5, with each fixed noise intensities, the experimental
curve are pertinent to the size of the samples. They all
converge to a fixed value asymptotically when the sample
size increased. We can see the experimental performance
converges close to the theoretical performance as the number
of samples increases, even if there is a model mismatch,
which demonstrates the flexibility of the model. Especially, the
convergence behavior in terms of noise intensity is unaffected.

VI. CONCLUSIONS

In this paper, we provide a upper bound on the normalized
mean squared error (NMSE) of the estimated signals, which
includes the closed-form expressions of NMSE, as well as
proposing a new algebraic formalization that leads to the upper
bound on the performance measure. The analysis stems from
the performance of a mismatched estimator that accesses the
finite sample size. The idea is inspired by the derivation of two
parts. One is to derive an iterative expression of the coefficient
matrix W, which is to be estimated as deterministic but
depends on the data. Another part aims to establish a closed-
form expression of discrepancy between the truth model and
its counterpart under the finite sample size. A major focus is on
the derivation of the estimation of covariance matrices, which
can be treated approximately under an asymptotic conditions.

12-15 November 2018, Hawaii

APPENDIX A
ASYMPTOTIC EXPRESSION FOR NMSE

Without loss of generality, (6) can be equally rewritten as

NMSE = tr {S5, W W}

=t {25, W W} +tr {025, W W}, (AD

where the first equality derived from the property of
tr{ABC} = tr{BCA}. The last equality is due to the
definition of error

Eg(b = 25¢ -+ 5250. (A.2)

Taking expectation of (A.1), we obtain
E{NMSE} = tr {S5, E[WT W]} +E [tr{6%5, W W}]

1
_ T
Qnder an asymptotic condtions, i.e. 7" — oo, the covariance
35, converges. As for the convergence rate, §3s, is propor-
tional to 1/ V/T. The detail derivation can be found in [17].

(A3)
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