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Abstract—This paper describes a singing voice synthesis system
based on deep neural networks (DNNs) named Sinsy. Singing
voice synthesis systems based on hidden Markov models (HMMs)
have grown in the last decade. Recently, singing voice synthesis
systems based on DNNs have been proposed. It has improved the
naturalness of the synthesized singing voices. In this paper, we
introduce several techniques, i.e., trajectory training, a vibrato
model, and a time-lag model, into the DNN-based singing voice
synthesis system to synthesize the high quality singing voices.
Experimental results show that the DNN-based systems with these
techniques outperformed the HMM-based systems. In addition,
the present paper describes the details of the on-line service for
singing voice synthesis.

I. INTRODUCTION

A statistical parametric approach to text-to-speech (TTS)
synthesis based on hidden Markov models (HMMs) has
grown in popularity in the last decade [1], [2]. Context-
dependent HMMs are estimated from speech databases in
this approach, and speech waveforms are generated from
the HMMs themselves. This framework makes it possible to
model differences of voice characteristics, speaking styles, or
emotions without recording large speech databases [3]–[5].
A singing voice synthesis system has also been proposed by
applying the HMM-based approach [6]. In December 2009,
we publicly released a free on-line singing voice synthesis
service named “Sinsy” [7], [8]. It has been constructed using
open-source software packages, e.g., HTS [9], hts engine
API [10], SPTK [11], STRAIGHT [12], and the CrestMu-
seXML Toolkit [13]. Users can synthesize singing voices by
uploading musical scores represented in MusicXML [14] to
the website.

Recently, deep neural networks (DNNs) have attained sig-
nificant improvement in various machine learning areas, e.g.,
speech recognition [15], speech synthesis [16], [17], and
singing voice synthesis [18]. In DNN-based singing voice
synthesis, a DNN works as an acoustic model that represents
a mapping function from label sequences (e.g., phonetic, note
key, and note length feature) to acoustic feature sequences.
DNN-based acoustic models can represent complex dependen-
cies between label sequences and acoustic feature sequences
more efficiently than HMM-based acoustic models [19].

On the other hand, WaveNet [20], which is an autoregressive
generative model that operates directly on audio waveforms,
has been proposed. It has been shown that the WaveNet

approach to the TTS system [21] has the potential to improve
the naturalness of synthesized speech. Furthermore, singing
voice synthesis based on a modified version of the WaveNet
architecture, which models acoustic features instead of raw
audio waveforms, has been proposed [22]. Because the models
with a series structure that predicts excitation parameters and
then predicts spectrum parameters using predicted excitation
parameters were used, the prediction errors of excitation pa-
rameters cause negative impacts on the prediction of spectrum
parameters in the latter part. There is no controllability of
vibrato because vibrato modeling is enclosed in pitch modeling
by WaveNet architecture. In addition, heuristic processing is
used to make the total of phoneme durations fit note durations.
Therefore, there is still room for improvement in singing voice
synthesis systems.

In this paper, we propose a DNN-based singing voice
synthesis system in which several techniques are used in
order to improve the quality of the synthesized singing voices:
i) trajectory training for DNN-based acoustic models, ii) a
vibrato model based on DNNs, and iii) time-lag and duration
models based on DNNs. These techniques can also address the
problems mentioned above. Furthermore, the on-line service is
updated so that the proposed DNN-based system can be used.

The rest of this paper is organized as follows. Section 2
gives an overview of the DNN-based singing voice synthesis
system. Section 3 describes three techniques introduced in
the proposed system. Experimental results in objective and
subjective evaluations are given in Section 4. Details of the
on-line service are presented in Section 5. Concluding remarks
and future works are shown in Section 6.

II. DNN-BASED SINGING VOICE SYNTHESIS SYSTEM

The DNN-based singing voice synthesis system is quite
similar to the DNN-based TTS system [16]. However, there
are distinct differences between them. This section overviews
the conventional singing voice synthesis system [18] and then
gives details of the differences between the DNN-based TTS
synthesis system and the conventional DNN-based singing
voice synthesis system.

A. System overview

Figure 1 gives an overview of the DNN-based singing voice
synthesis system [18]. It consists of a training and synthesis
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Fig. 1. Overview of the conventional DNN-based singing voice synthesis
system.

part. In the training part, the spectrum (e.g., mel-cepstral
coefficients) and excitation (e.g., fundamental frequencies:
F0s) are extracted from a singing voice database, and they
are then modeled by a DNN. The input and output features
of the DNN are time-aligned frame-by-frame by well-trained
HMMs. In the synthesis part, an arbitrarily given musical
score including lyrics to be synthesized is first converted to a
context-dependent label sequence. Second, the label sequence
is mapped to an acoustic feature sequence by the trained DNN
using forward propagation. Third, the spectrum and excitation
parameters are generated by the speech parameter generation
algorithm [23]. Finally, a singing voice is synthesized directly
from the generated spectrum and excitation parameters by
using Vocoder.

B. Pitch normalization

The performance of statistical parametric approaches to
singing voice synthesis heavily depends on the training data
because this system is “corpus-based.” It is difficult to express
contextual factors that hardly ever appear in the training
data. Although databases including various contextual factors
should be used in DNN-based singing voice synthesis systems,
it is almost impossible to cover all possible contextual factors
because singing voices involve a huge number of them, e.g.,
keys, lyrics, dynamics, note positions, durations, and pitch.
Pitch should be correctly covered because generated F0 tra-
jectories greatly affect the quality of the synthesized singing
voices.

To address this problem, a musical-note-level pitch normal-
ization technique has been proposed for DNN-based singing
voice synthesis systems [18]. In this technique, the differences
between the log F0 sequences extracted from waveforms and

the pitch of musical notes are modeled. This technique makes
it possible for DNN-based singing voice synthesis systems to
generate variable singing voices including any pitch. However,
modeling differences in log F0 present a challenge: how to
model log F0 of singing voices including unvoiced frames
and musical scores including musical rests. In [18], all un-
voiced frames and musical rests in musical scores are linear-
interpolated and modeled as voiced frames.

III. TECHNIQUES INTRODUCED INTO THE DNN-BASED
SINGING VOICE SYNTHESIS SYSTEM

A. Trajectory training for DNN-based acoustic modeling

In singing voice synthesis systems using DNN-based acous-
tic models [18], a single DNN is trained to represent the
mapping function from musical features to acoustic features.
In order to generate smooth parameter trajectories, not only
static features but also dynamic features are modeled by DNN.

The acoustic feature vector ot is the acoustic feature
vector consisting of a D-dimensional static-feature vector
ct = [ct(1), . . . , ct(D)]⊤ and their dynamic feature vectors.

ot = [c⊤t ,∆
(1)c⊤t ,∆

(2)c⊤t ]
⊤. (1)

The sequences of the acoustic feature vectors o and the static
feature vectors c, which represent a song, can be written in
vector forms as follows:

o = [o⊤
1 , . . . ,o

⊤
t , . . . ,o

⊤
T ]

⊤, (2)

c = [c⊤1 , . . . , c
⊤
t , . . . , c

⊤
T ]

⊤, (3)

where T is the number of frames included in a song. The
relation between o and c can be represented by o = Wc,
where W is a window matrix extending c to o. The optimal
static feature vector sequence is obtained by

ĉ = argmax
c

P (o | λ) = argmax
c

N (Wc | µ,Σ), (4)

where λ is a parameter set and N ( · |µ,Σ) denotes the
Gaussian distribution with a mean vector µ and a covariance
matrix Σ. µ is the output parameter from a trained neural
network. The optimal static-feature sequence ĉ is given by

ĉ = PW⊤Σ−1µ, P =
(
W⊤Σ−1W

)−1
. (5)

Training of the DNN aims to maximize the log likelihood
function L as

L = P (o | λ) = N (o | µ,Σ) =
T∏

t=1

N (ot | µt,Σt). (6)

In the conventional DNN-based singing voice synthesis,
although the frame-level objective function in (6) is used for
training a DNN, the sequence-level objective function in (4)
is used for parameter generation. To address this inconsis-
tency between training and synthesis, a trajectory training
method [24] is introduced into the training process of a DNN-
based singing synthesis system. The conventional likelihood
function in (6) can be reformulated as a trajectory likelihood
function by imposing the explicit relationship between static
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Fig. 2. Example of F0 sequence with vibrato.

and dynamic features, which is given by o = Wc [25]. The
trajectory likelihood function of c is then written as

LTrj =
1

Z
P (o | λ) = P (c | λ) = N (c | c̄,P ), (7)

where Z is a normalization term. Inter-frame correlation is
modeled by the covariance matrix P that is generally full.
Note that the mean vector c̄ is equivalent to the generated
static feature sequence shown by (5). The parameter set λ is
estimated by maximizing the trajectory likelihood LTrj .

B. Vibrato model

Vibrato is one of the important singing techniques that
should be modeled, even though it is not included in the mu-
sical score. Vibrato has been assumed as periodic fluctuations
of only F0 for the sake of simplicity, and it is modeled by
sinusoid [26]. The vibrato v(·) of the t frame in the i-th vibrato
section [t

(s)
i , t

(e)
i ] can be defined as

v
(
ma(t),mf (t), i

)
= ma(t) sin

(
2πmf (t)fs

(
t− t

(s)
i

))
, (8)

where ma(t), mf (t), and fs correspond to the F0 amplitude
of vibrato in cents, the F0 frequency of vibrato in Hz, and
frame shift. Two dimensional parameters, ma(t) and mf (t),
are added to the acoustic feature vector. Figure 2 shows
examples of the F0 sequence extracted from the natural singing
voice and synthesized singing voice. The area bounded by red
broken lines shows the extracted and generated vibrato areas.
It can be seen from the figure that the vibrato is accurately
trained.
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Fig. 3. Example of time-lag.

C. Time-lag and duration model

One of the unique features of the singing voice synthesis
system is the time-lag model [6]. Because the rhythm or tempo
of the music must not be ignored when the singing voice is
synthesized, the start timing of the notes or phoneme durations
in each note must be determined according to the musical
score. In human singing voice, however, there are differences
between the start timing of the notes and the singing voices as
shown in Fig. 3. The start timing of the singing voice is often
earlier than that of a corresponding note. Because this could
be an important factor to the naturalness of the synthesized
singing voice, they are modeled explicitly by time-lag models.

In the HMM-based singing voice synthesis system, the
timings of each note are modeled with Gaussian distribu-
tions to overcome this problem. Hidden semi-Markov model
(HSMM) [27]-based phoneme alignments are used to find the
start timing of each note in the singing voice database. The
time-lag models are then trained as context-dependent models,
and decision tree-based context-clustering is applied to them
in the same manner as the other models in the HMM-based
system. In this paper, we propose the DNN-based time-lag
model and duration model. Periods between the start timings
of musical notes and the singing voice are modeled by DNNs.
The phoneme durations at each note are also modeled by
DNNs. In the synthesis part, first we determine the duration of
each musical note from the given score including the lyrics to
be synthesized. Next, the time-lags of each musical note are
predicted using the time-lags model and the boundary of each
musical note is determined. Then, the each phoneme duration
is predicted by the duration model with consideration of the
length of musical notes. The duration of the k-th phoneme in
the n-th musical note is determined as follows:

d
(DNN)
nk = Ln · µnk

/ Kn∑
k=1

µnk, (9)

where Ln is the length of the n-th musical note considering
time-lag, Kn is the number of the phoneme in the n-th musical
note, µnk is the output value of the DNN-based duration model
at the k-th phoneme in the n-th musical note.

It is known that there is a difference in phoneme duration
for each kind of phoneme (e.g., vowel, consonant, and pause).
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Thus, we use a mixture density network (MDN) [28] as
duration modeling to consider the phoneme duration variances.
It should be noted that the MDN with 1 mixture component
was used so that the MDN can represent a single Gaussian
distribution like the state duration distributions in an HMM-
based system. The phoneme durations considering variances
are obtained by

d
(MDN)
nk = µnk + ρ · σ2

nk, (10)

ρ =

(
Ln −

Kn∑
k=1

µnk

)/ K∑
n=1

σ2
nk, (11)

where σnk is the variance corresponding to k-th phoneme in
the n-th musical note, which is predicted by a trained MDNs.

IV. EXPERIMENT

A. Experimental Conditions

70 Japanese children’s songs (total: 70 min) by female
singer f001 were used for training. 60 songs were used for
training, and the others were used for testing. Singing voice
singles were sampled at 48 kHz and windowed with a 5-
ms shift. The feature vectors consisted of 0-th through 49-
th STRAIGHT mel-cepstral coefficients, log F0 value, 24
dimension mel-cepstral analysis aperiodicity measures, and 2-
dimension vibrato parameters. Mel-cepstral coefficients were
extracted by the STRAIGHT [29]. The vibrato parameter
vectors consisted of amplitude (cent) and frequency (Hz).

Five-state, left-to-right, no-skip HSMMs were used. The
decision tree-based context clustering technique was separately
applied to distributions for the spectrum, excitation, state
duration, and time-lag. The spectrum stream was modeled
with single multivariate Gaussian distributions. The excitation
stream was modeled with multi-space probability distributions
HSMMs (MSD-HSMMs) [30], each of which consisted of
a Gaussian distribution for “voiced” frames and a discrete
distribution for “unvoiced” frames. The vibrato stream was
also modeled with MSD-HSMMs, each of which consisted
of a Gaussian distribution for “vibrato” frames and a discrete
distribution for “no-vibrato” frames. The MDL criterion [31]
was used to control the size of the decision trees.

B. Objective evaluation of time-lag and duration modeling

To evaluate the accuracy of predicted time-lag and duration,
root mean squared error in phoneme boundary (Boundary-
RMSE) was used.

• DT: Conventional method that consists of decision tree-
based clustered context-dependent time-lag model and
state duration distribution of the HSMM [6]

• DNN: Time-lags and phoneme durations are modeled by
DNN

• MDN: Time-lags are modeled by DNN and phoneme
durations are modeled by MDN

The input features of the DNN-based time-lag and duration
model was an 822-dimensional feature vector, consisting of
734 binary features for categorical linguistic contexts (e.g.,
the current phoneme identity) and 88 numerical features

TABLE I
OBJECTIVE EVALUATION RESULTS: COMPARISON OF THREE SYSTEMS

DT DNN MDN

Boundary-RMSE (frame) 12.74 11.51 11.21

for numerical contexts (e.g., the number of phonemes in
the current syllable). The output feature for the DNN-based
time-lag model was a 1-dimensional time-lag value, and the
output feature of the DNN-based duration model was a 1-
dimensional phoneme duration value. The output feature for
MDN-based duration model was a 1-dimensional phoneme
duration mean and variance value. The architecture of the
DNN was 3 hidden layers with 64 units per layer for time-
lag modeling, and 3 hidden layers with 256 units per layer
for duration modeling. The sigmoid activation function was
used in the hidden layers, and the linear activation function
was used in the output layer. The weights of the DNN and the
MDN were initialized randomly, then the DNN was optimized
by minimizing the mean squared error, and the MDN was
optimized by maximizing the likelihood. For training the DNN
and the MDN, a mini-batch stochastic gradient descent (SGD)-
based back-propagation algorithm was used.

Table I shows the experimental results. It can be seen that
both DNN and MDN performed better in predicting time-lags
and durations than DT. This result indicates that replacing
the decision tree-based clustered models into DNN-based
models is effective. Also, comparing MDN with DNN, MDN
outperformed DNN. This suggests that considering variances
is effective in estimating the phoneme boundary.

C. Objective evaluation of acoustic modeling

To objectively evaluate the performance of the systems,
the mel-cepstral distortion (MCD), and root mean squared
error in log F0 (F0-RMSE) were used. In this experience,
the following three systems were compared.

• HMM: Conventional HMM-based singing voice synthe-
sis system [32]

• DNN: Singing voice synthesis based on DNN trained by
maximizing the objective function in (6)

• TrjDNN: Singing voice synthesis based on DNN trained
by maximizing the trajectory function in (7)

The input features for the DNN-based systems was an 842-
dimensional feature vector consisting of 734 binary features
for categorical linguistic contexts, 108 numerical features
for numerical contexts, and duration features including the
duration of the current phoneme and the position of the current
frame. The output feature was a 236-dimensional feature
vector consisting of 50 mel-cepstral coefficients, log F0 value,
25 dimensional mel-cepstral analysis aperiodicity measures,
2 dimensional vibrato parameters and their dynamic features
(delta and delta-delta), and a voiced/unvoiced binary value
and a vibrato/no-vibrato binary value. A single network that
modeled every spectral, excitation, aperiodicity parameters,
and vibrato parameters was trained. The architecture of the
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TABLE II
OBJECTIVE EVALUATION RESULTS: COMPARISON OF THREE SYSTEMS

HMM DNN TrjDNN

MCD (dB) 5.188 5.061 5.169
F0-RMSE (cent) 78.46 79.74 81.34
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Fig. 4. Mean opinion scores of three singing voice synthesis systems.

DNN-based acoustic models was 3 hidden layer with 2048
units per layer. The sigmoid activation function was used in
the hidden layers, and the linear activation function was used
in the output layer. The weights of the DNN in DNN were
initialized randomly, then they were optimized by maximizing
the objective function L in (6). The weights of the DNN in
TrjDNN were initialized by a trained DNN in DNN, then they
were optimized by maximizing the objective function LTrj in
(7). For training the DNNs, a mini-batch SGD-based back-
propagation algorithm was used. For TrjDNN, one musical
phrase was used as one mini-batch in SGD-based training.

Table II shows the results of objective evaluation. From this
table, it can be seen that the DNN-based system shows the
better results than the HMM-based system HMM in MCD.
This result indicates the effectiveness of the use of DNN
for modeling spectrum parameters. However, the DNN-based
system showed slightly worse F0-RMSE than HMM. This is
because linear-interpolation of log F0 in pitch normalization
has an influence on predicted F0 parameter sequences.

D. Subjective evaluation

To evaluate the naturalness of the synthesized singing voice,
a subjective listening test was conducted. In this experiment,
HMM, DNN, and TrjDNN were compared. Time-lags and
phoneme durations are modeled by DT in HMM and MDN
in DNN and TrjDNN. The naturalness of the synthesized
singing voice was assessed by the mean opinion score (MOS)
test method. The subjects were ten Japanese students in
our research group. Twenty musical phrases were chosen at
random from the test songs. In the MOS test, after listening
to each test sample, the subjects were asked to assign the
sample a five-point naturalness score (5: natural – 1: poor).

Figure 4 shows the results of subjective evaluation scores.
The DNN-based systems, DNN and TrjDNN, outperformed

TABLE III
DIFFERENCE OF SYSTEMS

2009 2018

Japanese: 5
Number of singers Japanese: 1 English: 2

Mandarin: 1

Supported pitch range G3 to F5 All pitches

Maximum length of 5 minutes HMM: 7 minutes
musical score DNN: 5 minutes

HMM. This result indicates the effectiveness of the use of
DNNs for modeling singing voices. Comparing DNN and
TrjDNN, TrjDNN performs better than DNN. This result
indicates that the naturalness of a synthesized singing voice
is improved by introducing the parameter generation process
into the training of DNNs.

V. DETAILS OF ON-LINE SINGING SYNTHESIS SERVICE

The on-line singing synthesis service “Sinsy” was released
in December 2009. Users can easily change the timbre, pitch,
and strength of the vibrato. A web-based user interface [7] was
used for Sinsy (Fig. 5). One of the reasons for this was that
Sinsy could be frequently updated. We have updated various
functions since the first release. Table III shows the differences
of the system between 2009 and 2018. One Japanese singer’s
voice was offered at the beginning of the service in 2009.
In 2018, 5 Japanese, 2 English, and 1 Mandarin singer were
provided. There was a restriction of the pitch range because a
pitch that barely ever appeared in the training data could not
be synthesized in the statistical parametric method. Therefore,
MusicXML files that exceeded the range of pitches from G3
to F5 were rejected in 2009. The limitation of the pitch range
was abolished because all pitches can be synthesized by pitch
adaptive training in an HMM-based system [32] and pitch
normalization in the DNN-based system that was described
in Section II-A. Another limitation was the length of the syn-
thesized singing voice. One of the most attractive features of
HMM-based singing voice synthesis is its small computational
cost in the synthesis part. However, this system is vulnerable
to frequent access or long songs because singing voices are
synthesized on the web server. Therefore, MusicXML files that
exceed 7 minutes for HMM vocal and 5 minutes for DNN
vocal are rejected.

The number of posts per year was 4,045 in 2010; however,
it was 21,921 in 2017. The rate at which waveforms were
properly synthesized be utilizing users’ MusicXML files that
were uploaded to Sinsy in 2010 was about 70%. The other
30% included errors, other than those created by the restric-
tions, that prevented conversion into MusicXML files because
of the differences in MusicXML files generated by various
tools. On the other hand, the rejection rate was about 5% in
2017. This is because of improvement of analysis accuracy
of MusicXML and the relaxation of restrictions on musical
scores.
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English / Japanese

Sinsy is an HMM/DNN‒based singing voice synthesis system. You can

generate a singing voice sample by uploading the musical score

(MusicXML) to this website.

Language Japanese

Vocal f00001j : Yoko : Japanese

Gender param. 0.55 (‒0.8 ≤ x ≤ 0.8, default: 0.55)

Vibrato intensity 1 (0.0 ≤ x ≤ 2.0, default: 1.0)

Pitch shift 0 (‒24 ≤ x ≤ 24, default: 0)

Musical score

(.xml)
選択されていませんファイルを選択 Send

HTS
finale NotePad
STRAIGHT

Sinsy (Sourceforge)
MuseScore
Cadencii

hts̲engine API
Cubase
SPTK

Terms of Use

Demo videos

YouTube

Nico Nico Douga

Users videos

YouTube

Nico Nico Douga

SoundCloud

PIAPRO

MUSIC TRACK

How to use videos

YouTube

Nico Nico Douga

Character design

Associated information

News

Samples

Genkotsu yama no tanuki‒san (in Japanese)

f00001j xml

f00002j xml

f00004j̲beta xml

f00005j xml

m01083j xml

My grandfather's clock (in English)

f00002e xml

m00003e̲beta xml

Happy brithday to you (in Chinese Mandarin)

f00002m xml

Options

Feminine/Mascline‒like singing voice can be synthesized by

changing the gender parameter value small/big.

The pitch of the synthesized singing voice can be controlled in half‒

tone by adjusting the pitch shift value.

The vibrato depth can be changed by adjusting the vibrato

intensity value.

MusicXML

Common

UTF‒8 encoding MusicXML is supported.

The head measure needs to start with a rest.

The following musical symbols are supported: tie, slur, staccato,

accent, dynamics, crescendo, decrescendo, breath mark.

Please note that, due to server limitations, the maximum

duration of any uploaded song is limited to 7 minutes for HMM

vocal and 5 minutes for DNN vocal.

The alphabet (phonemes) input are supported. How to use is

here.

English

The lyrics must be entirely written in the alphabet.

Japanese

The lyrics must be entirely written in the hiragana or katakana.

Each character should be written according to its

pronounciation, as shown in the example bellow. Please use full‒

width characters. 
 

e g : ̀̀こんにちは'' → ̀̀こんにちわ''

25 Dec. 2017 [Ver.

3.9]
 

Japanese vocal

m01083j was added.
 

All vocals were

renamed.

25 Dec. 2016 [Ver.

3.8]
 

Japanese vocal f005j

was added.
 

Japanese vocal

f001j̲dnn̲beta

trained by DNN‒based

singing voice

synthesis approach

was added.
 

Synthesized singing

voice quality of f001j

was increased.

05 Aug. 2016
 

A bug of MusicXML

analyzer was fixed.
 

Phoneme tables were

modified.

25 Dec. 2015 [Ver.

3.7]
 

Chinese (Mandarin)

vocal f002m was

added.
 

Synthesized singing

voice quality was

increased.

20 Apr. 2015
 

Reference manual was

updated to input

English phonemes.

25 Dec. 2014 [Ver.

3.6]
 

Synthesized singing

voice quality was

increased.
 

The alphabet

(phonemes) input was

supported.

28 Aug. 2014
 

SoundCloud playlist

was created.

02 Apr. 2014
 

Sample waveforms

were added

0:00 / 0:17

0:00 / 0:17

0:00 / 0:17

0:00 / 0:17

0:00 / 0:17

0:00 / 1:06

0:00 / 1:06

0:00 / 0:06

Fig. 5. Sinsy demonstration website

VI. CONCLUSIONS

This paper described recent developments in the DNN-
based singing voice synthesis system (Sinsy). To obtain natural
singing voices, we introduced several specific techniques for
DNN-based singing voice synthesis: trajectory training, a vi-
brato model, and a time-lag and duration model. Experimental
results show that the proposed system gives a more natural
synthesized singing voice. In addition, the details of the on-line
service with the proposed system were described. Future work
includes conducting the model structure of recurrent units and
the expansion of singing voice synthesis to other languages.
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