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Abstract—Music genre and style recognition are very interest-
ing areas of research in the broad scope of music information
retrieval and audio signal processing. In this work we propose a
novel approach for music genre and style recognition using an
ensemble of convolutional neural network (CNN), convolutional
long short term memory network (CNN LSTM) and a transfer
learning model. The neural network models are trained on a
diverse set of spectral and rhythmic features whereas the transfer
learning model was originally trained on the task of music
tagging. We compare our system with a number of recently
published works and show that our model outperforms them
and achieves new state of the art results.

I. INTRODUCTION & RELATED WORK

Music information retrieval (MIR) is an interdisciplinary
field dealing with the analysis of musical content by combining
aspects from signal processing, machine learning and music
theory. MIR enables computer algorithms to understand and
process musical data in an intelligent way. Musical genre and
style recognition is one of the most important subfields of
MIR. Automatic musical genre and style analysis is a very
interesting problem in the context of MIR because it enables
systems to perform content based music recommendation, or-
ganizing musical databases and discovering media collections.

Music genre is defined as an expressive music style incor-
porating instrumental or vocal tones in a structured manner
belonging to a set of conventions. The first significant work on
automatic musical genre and style recognition were performed
in [1] by Tzanetakis and Cook. Timbral texture, rhythmic
content & pitch content based features were proposed and
classification was done using Gaussian mixture model (GMM)
and K-nearest neighbor (K-NN) algorithms. Musical genre
recognition using support vector machines were proposed in
[2] by Xu et al. In [3] Costa et al. proposed the approach of
musical genre recognition using spectrogram features. Instead
of directly extracting features from audio data, features are
extracted from the visual representation of spectrograms. In
[4], [5] specific musical features were used with feature
selection techniques. Survey works performed in [6], [7] gives
a comprehensive account of genre classification of musical
content and evaluation techniques. Authors in [8] introduced
the Million Song Dataset - a collection of audio features and
metadata for a million contemporary popular music tracks.
A wide range of musical information retrieval systems can be
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build using this dataset including genre recognition, automatic
music tagging, music recommendation, etc.

II. DATASETS

In this work we have focused on genre and style recognition
of the songs in the GTZAN dataset [1] and the Ballroom
dataset [9]. This two datasets has been widely studied in
the area of music genre and style recognition. The GTZAN
dataset contains songs of ten different genres - blues, classical,
country, disco, hip-hop, jazz, metal, pop, reggae & rock. Each
genre is represented by 100 tracks. The Ballroom dataset
consists of eight different styles - cha cha, jive, quickstep,
rumba, samba, tango, viennese waltz & slow waltz. There
are total 698 tracks. In both the datasets all the audio tracks
are 30 seconds long and 22050Hz Mono 16-bit audio files in
.wav format. Distributions of these two datasets across genres
& styles are presented below in Table. I & Table. II.

TABLE I: Genre distribution
in GTZAN dataset. TABLE II: Style distribution

in Ballroom dataset.

Genre # instances

Blues 100 Style # instances
Classical 100 Cha Cha 111
Country 100 Jive 60
Disco 100 Quickstep 82
Hip-Hop 100 Ramba 98
Jazz 100 Samba 86
Metal 100 Tango 86
Pop 100 Viennese Waltz 65
Reggae 100 Slow Waltz 110
Rock 100

III. PROPOSED METHODOLOGY

To recognize the genre/style of a song, we first train our
deep neural network models on a set of extracted spectral and
rhythmic features. We also utilize a transfer learning system
to extract meaningful features from the songs. A multilayer
perceptron network is then trained on this transferred features
and the average of the spectral & rhythmic features to predict
the genre/style. Finally the predictions of different models are
combined using a majority voting ensemble.
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A. Feature Extraction

1) Two Dimensional Spectral and Rhythmic Features::
A diverse set of spectral and rhythmic domain features
are first extracted from the raw musical wav signals. In
the features listed below, ‘Tonnetz’ and ‘Tempogram’ are
rhythmic features, the rest are spectral features. The musical
data in both the datasets are sampled at 22050 Hz and are
30 seconds long resulting in a total of 22020*30 = 661500
samples. We compute the features for each sliding window of
1024 samples. This results in 661500/1024 = 646 windows
and thus each song is represented as a (646, k) dimensional
feature matrix. The exact choice of k depends on the feature
being computed.

e Mel Spectrogram: Mel-frequency cepstrum (MFC) repre-
sentations introduced in [10] are widely used in automatic
speaker and speech recognition. The Mel spectrogram pro-
duces a time-frequency representation of a sound imitating the
biological auditory systems of human beings. We compute the
magnitude spectrum from the time series musical data and then
map it into the mel scale. We used k=128.

e Mel, Delta and Double Delta Coefficients: Mel coefficients
(MFCCs) are the coefficients that collectively make up a Mel-
frequency cepstrum. We use 20 (= k) of this coefficients as
features. We also used derivative and double derivative of the
Mel coefficients known as Delta and Double Delta coefficients.
o Energy Normalized Chromagram: Chroma audio features
are extensively used in musical signal processing. Chroma fea-
tures are effective in audio matching and retrieval applications
[11], [12] as they capture melodic and harmonic characteristics
of music and are robust to changes in instrumentation and
timbre. In [13] authors introduced Chroma Energy Normalized
Statistics (CENS) features by considering short time statistics
over energy distributions within the chroma bands. We took
k=12 as it represents 12 distinct semitones of the musical
octave.

e Constant Q Chromagram: Constant Q transform [14]
constitutes of a bank of filters with logarithmically spaced
center frequencies f, = fo * 2% where n = 0,1, ..; central
frequency of the lowest filter is denoted by f; and the number
of filters in each octave is denoted by b. An appropriate
choice of f( and b directly corresponds to musical notes. This
transform also has increasing time resolution towards higher
frequencies resembling the human auditory system. k=12 was
taken.

e Short Time Fourier Transform (STFT) Chromagram:
Chromagram of short-time chroma frames are used with k=12.
e Tonnetz: Tonal centroid features (tonnetz) are computed
following works in [15]. Authors show that this features are
successful in detecting changes in the harmonic content of
musical audio signals, such as chord boundaries in polyphonic
audio recordings. We used k = 6 tonnetz features.

e Tempogram: The aspects of tempo and rhythm are very
important dimensions of music. In [16], the authors introduced
a robust mid-level representation that encodes local tempo
information by computing local autocorrelation of the onset
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strength envelope in music signals. This tempogram feature
can act as a very important source of information for MGR,
specifically where music reveals significant tempo variations.
We used k = 128 tempogram features.

2) One Dimensional Averaged and Transfer Learning
Features: We also compute the following one dimensional
vectors as a summary statistic of the whole song.

e Averaged Signal Vector: This vector is calculated simply by
taking the average of all the extracted two dimensional features
listed above. After extracting (646, k1) dim matrix from Mel
Spectrogram, (646, k2) dim matrix from Mel Coefficients,
.., (646,k,,) features from tempogram, the averaging was
performed over these 646 windows. Finally vectors of k1, ko,
..., k,, dimensions were obtained which were then concatenated
to obtain the averaged signal vector. Our particular choices of
k1, ..., ky led to this vector having dimension of 342.

e Music Transfer Learning Vector: Transfer learning is
frequently used in computer vision problems. In this kind
of systems, generally a deep convolutional net trained on the
large scale ImageNet data [17] is used. Although the original
network is trained on ImageNet data, it is able to capture a
wide variety of visual features which are then used for other
recognition tasks. In [18] authors introduce a musical transfer
learning system. A deep convolutional neural network is first
trained on a large dataset [8] for music tagging. This trained
network is then used as a feature extractor for other related
tasks. We use the model to extract a 160 dimensional vector
for each song.

B. Models

Convolutional neural networks (CNN) are specially de-
signed neural networks for processing data that has a grid-like
topology [19]. Introduced by LeCun et al. [20] convolutional
neural networks have produced excellent results in a wide
variety of problems including computer vision [21], [22],
speech recognition [23], natural language processing [24] and
reinforcement learning [25]. In [24] Kim et al. introduced the
idea of 1D convolutional neural network being applied to a
variety of natural language processing (time series) problems
and producing state of the art results. Long short term memory
(LSTM) networks [26] are also widely used in sequential time
series data to capture long term dependencies. LSTM networks
effectively tackles the exploding or vanishing gradient problem
by using an input, an output and a forget gate.

In this work, we apply variants of 1D (one dimensional)
CNN & 1D CNN-LSTM models for musical genre/style
prediction. The problem that we focus on is a time series
problem as the extracted features from our musical data can be
thought as a 1D grid data at regular time intervals. Considering
that our spectral and rhythmic features have dimensions of
(646, k) (section III-A) one can expect that a 2D convolution
would be appropriate, but the fact that 646 is the number of
windowed time-steps and k is the 1D grid of features at each
time-step, makes 1D CNN & 1D CNN-LSTM networks more
suitable for our problem. Further 2D convolution is generally
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Fig. 1: Distinctive spectral and rhythmic features of two songs belonging to the ’Classical’ and 'Jazz’ genre in GTZAN dataset.
Mel Spectrogram and Constant Q Chromagram are spectral domain features, whereas Tonnetz and Tempogram are rhythm
domain features. Similar phenomenon is observed for the rest of the features across all the genres in GTZAN dataset and the

styles in Ballroom dataset.
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applied for spatial domain features (height-width-depth in
images), whereas our features are time-series features and
doesn’t represent any kind of height-width-depth spatiality.
» Next we briefly discuss how these 1D CNN & 1D
CNN-LSTM models operate. These models consists of a
number of stages:

a) Convolution stage A: This is the first convolution stage. A
number of filters/kernels (generally tens to thousands) of very
small dimension are slided and convoluted over the input data
to create a feature map. The resultant 1D convolution (C'41)
between the data (D) and a filter (Fa1) is,

D*FA1=CA1
specifically,

b
“ d aw +bxr + cy + dz
c

f R cw~+dr+ey+ fz
e =

b y oz ew+ fxr+ gy + hz
? j gw + hx + iy + jz

The important thing to note here is that the width and of filter
(F'41) and the data (D) should be same (here both have width
of 2; the filter also has length of 2, whereas the data has length
of 5). The filter would gradually slide over the length of the
data and the resultant would be computed using dot product.
Also note that, C'4; is the convoluted output of a single filter.
Multiple such convoluted outputs (C'42, C 43, etc.) would be
there for the multiple filters.

An element wise non-linear activation function is then applied
over Cy;. In general Rectified Linear Unit (ReLU) [27] is
widely used. It is defined as, ReLu(xz) = maximum(0,z).
To illustrate,

C'yy = ReLU(Ca1)
-5
then,

specifically if, Ca; = Clyy =

S W = O

b) Pooling stage: Pooling is a sample based discretization
process where we down-sample an representation to provide
an abstracted form of the input. The pooling function is
computed on the column-wise concatenated feature maps
(outputs) from the Convolution stage A. Assuming there were
4 distinct filters, we will have 4 different outputs from the
Convolution stage A. Let these are C'y;, C'yy, Clys & Cy,.
These are concatenated column-wise to obtain C’y.

C'y = concatenate[Cyy, Clyo, Clysy Clydl
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The pooling operation is then computed along the length of
C';. Generally max pooling or average pooling are used. If,

0 2 1 0
4 4 0 0

!y =
A7 03 5 9 1
0 25 2 3

then max pooling and average pooling with factor 2 would
result in,

4 4 1
max pooling (Cy) = [3 . 2}
2 3

average pooling (C'y) = [1 R 22 g}

¢) Convolution stage B: The next convolution and activation
operation is performed on the max or average pooled output
of 01’4. Let after the convolution and activation, the outputs
of this stage are C';, Cpo, etc.

d) Global Pooling & LSTM stage: At first we column-
wise concatenate the outputs from the previous stage.
Assuming there were 4 filters in the Convolution stage B we
will have,

Cz = concatenate[Clgy, Cha, Chs, Cryl

We then apply a global pooling (max/average) operation on
C' for the 1D CNN models. If,

1000
2 4 3 2

Cl, =

B= 13 2 2 ¢
6 0 3 1

then global max pooling and global average pooling would
result in,

global max pooling (C) = [6 4 3 2}

global average pooling (C) = [3 1.5 2 0.75]

A single dimensional vector (having size equal to the no.
of filters in the Convolution stage B) is thus obtained. This
operation can also be thought as if, first taking the maximum
along the length of C%;, Chy Chy & Cpy, and then
concatenating the maximum values.

In contrast, we apply a LSTM operation for the 1D
CNN LSTM models. Here each row of the C'; matrix works
as the single time-step features for the LSTM network. We
start from the top row and gradually move to the bottom row.
We keep the hidden dimension of the LSTM network equal
to the no. of filters in the Convolution stage B. The LSTM
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network outputs a single dimensional vector after taking the
C'; matrix as input. Hence in this case also, we obtain a
single dimensional vector (having size equal to the no. of
filters in the Convolution stage B) after applying the LSTM
operation.

e) Output stage: The single dimensional vector obtained from
the previous stage is then passed through a fully connected
network to the output layer having 10 neurons (GTZAN) &
8 neurons (Ballroom) for the final genre/style classification.

» In total, we apply four different 1D CNN and 1D CNN-
LSTM models on the extracted two dimensional features to
predict the genre/style of the song. Structure of these models
are outlined in Fig. 2. We briefly describe configurations of
these models below. The first & third models are 1D CNN
models, whereas, the second & fourth models are 1D CNN
LSTM models. For the one dimensional averaged & trans-
fer learning features, we use a simple multilayer perceptron
(MLP) model for genre/style prediction. This is the fifth model
described below.

e CNN Max Pooling Model: This sequence of stages are
used: comvolution - max pooling - convolution - global max
pooling - output. The two convolution stages have 128 &
64 filters respectively, all with length of 3. The max pooling
operation is performed with factor 2.

¢ CNN Max Pooling LSTM Model: This sequence of
stages are used: convolution - max pooling - convolution -
Istm - output. The two convolution stages have 128 & 64
filters respectively, all with length of 3. The LSTM network
has hidden dimension of 64. The max pooling operation is
performed with factor 2.

o CNN Average Pooling Model: The max pooling and global
max pooling stages in the CNN Max Pooling Model are
replaced with average pooling and global average pooling.

e CNN Average Pooling LSTM Model: The max pooling
stage in the CNN Max Pooling LSTM Model is replaced with
average pooling.

e Multilayer Perceptron (MLP) Model: The input to this
network is an one dimensional feature vector. A single hidden
layer with 256 nodes is used with 'ReLU’ activation. We also
used 25% Dropout [28] in this hidden layer for regularization.
The output layer has 10 (8) neurons corresponding to 10 (8)
different genres (styles).

» We used ’Softmax’ activation for the output layer.
All the models are trained with ‘Adam’ optimizer [29]
(learning rate of 0.001) with cross entropy loss function. We
kept the batch size equal to 32 during the training process.
We trained each model for 50 epochs with Early Stopping
[30] having patience of 10.

IV. EXPERIMENTS, RESULTS AND DISCUSSION

The GTZAN dataset consists of 10 different classes of
genres whereas the Ballroom dataset consists of 8 different
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classes of styles. We evaluate models for both the datasets in
this multi-class classification framework. We run our exper-
iments in a 10 fold cross validation setup. We maintain the
uniform distribution of musical genres/styles in each fold i.e.
we perform stratified 10 fold sampling.

For GTZAN dataset the average 10 fold accuracy score of
our models are reported in Table. IIl. A number of interesting
observations can be made from the results. First of all, we
observe that the best result is obtained by the multilayer
perceptron model when used with music transfer learning
features. This result can be expected as the original system was
trained on the very large Million Song Dataset [8] containing
rich label sets for various aspects of music including *'mood’,
’era’, ’instrumentations’ and most importantly ’genre’. Also
further fine-tuning was performed on our experimental setup
leading it to produce the best results. We also observe that
the Mel Spectrogram features produces best results in CNN
Max Pooling and CNN Average Pooling models, whereas
Mel Coefficients produces best results for CNN Max Pooling
LSTM and CNN Average Pooling LSTM models.

The introduction of LSTM resulted in improved perfor-
mance for Delta Coefficients, Double Delta Coefficients, Ton-
netz features and Tempogram features. The performance of
Max Pooling and Average Pooling is somewhat consistent
across all the feature sets. In some cases Max Pooling performs
better, whereas in other cases Average Pooling performs better.

For Ballroom dataset the average 10 fold accuracy score of
our models are reported in Table. IV. One important aspect
to note here is that the Tempogram features are the best
performing features in this dataset and outperforms all the
other features by a big margin. This result is expected because
the dataset was created in such a way, so that there are
significant tempo variations between styles [9]. For the rest
of the features, we observe similar kind of patterns in results
as discussed above in GTZAN dataset.

This heterogeneous and complimentary characteristics of
the models led us to build an ensemble model which effec-
tively improves the performance by combining the outputs
of all the base systems. Our ensemble model is a simple
majority voting ensemble of the deep learning and multilayer
perceptron models; e.g. for a particular song, a number of
genre/style predictions will be available from the base models.
The genre/style which is predicted with most frequency will be
the final assigned genre/style. If multiple genres are predicted
with highest frequencies then the final decision is made based
on the predicted softmax probabilities. By incorporating this
simple rule, we were able to get a large improvement in
performance as reported in Table V.

V. COMPARATIVE ANALYSIS

In Table VI we compare our proposed model with other
state-of-the-art systems. In [18] authors used a transfer learn-
ing system trained for music tagging to extract features for
genre prediction. They reported scores of 89.8% by taking
features from multiple layers of the transfer CNN model.
Arabi and Lu [31] reported an accuracy of 90.79 % using
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Fig. 2: a) CNN Max Pooling and b) CNN Max Pooling LSTM models for Mel Spectrogram input. For CNN Average Pooling

and CNN Average Pooling LSTM models, the max pooling and

global max pooling functions are replaced with average pooling

and global average pooling functions respectively. Note that, this network structure is for GTZAN dataset; for Ballroom dataset

the output layer will have 8 neurons.

a SVM classifier over selected combination of high (chord
progression, chord distribution, beat) and low level (flux,
flatness, roll-off, spectral centroid) musical features. In [4]
Panagakis et al. used rich, psycho-physiologically inspired
properties of temporal modulations of music with a sparse
representation based classifier to achieve accuracy score of
91.0 %. Mostly pitch, temporal and timbre features were used
with non negative matrix factorization as a feature reduction
technique. Works by the same authors in [5] further increases
the score to 93.7% by the utilization of topology preserving

non-negative tensor factorization. For Ballroom dataset Kla-
puri et al. [32] reported an accuracy of 90.97 %. They account
for subtle energy changes that might occur in narrow frequency
subbands (e.g., harmonic or melodic changes) as well as
wide-band energy changes (e.g.,drum occurrences). They also
jointly determine three metrical levels (the tatum, the beat
and the measure) through probabilistic modeling of their
relationships and temporal evolutions. In [33] Marchand and
Peeters proposed Modulation Scale Spectrum which achieved
93.1 % accuracy.
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TABLE III: Average 10 fold cross validation accuracy in GTZAN dataset.

NN Max N CNN .
Features & Models @17A% | NV | pouing” | average | Averuse | Moltiayer
LSTM Pooling LSTM
Mel Spectrogram 83.0 73.6 82.5 75.7 -
Mel Coefficients 80.2 79.0 81.6 80.5 -
Delta Mel Coefficients 70.4 712 74.5 71.0 -
Double Delta Mel Coefficients 72.1 72.9 72.1 76.5 -
Energy Normalized Chromagram 45.7 345 43.0 36.2 -
Constant Q Chromagram 60.0 49.4 57.5 45.6 -
STFT Chromagram 62.8 52.5 63.4 53.7 -
Tonnetz Features 50.2 535 51.0 55.8 -
Tempogram Features 41.5 42.0 41.6 433 -
Averaged Signal Features - - - - 77.1
Transfer Learning Features - - - - 85.5
TABLE IV: Average 10 fold cross validation accuracy in Ballroom dataset.
Max CNN .
Features & Models (Ballroom) Clljg)l?r/ll;x C%Z){'i;\l/; %Seljfire ?,r)zl]?f; 11;2 :ég;ig;
ooling LSTM
Mel Spectrogram 0.80 0.81 0.80 0.83 -
Mel Coefficients 0.28 0.26 0.32 0.34 -
Delta Mel Coefficients 0.68 0.65 0.64 0.64 -
Double Delta Mel Coefficients 0.74 0.70 0.72 0.71 -
Energy Normalized Chromagram 0.44 0.48 0.41 0.39 -
Constant Q Chromagram 0.57 0.60 0.57 0.58 -
STFT Chromagram 0.57 0.56 0.52 0.55 -
Tonnetz Features 0.50 0.52 0.54 0.53 -
Tempogram Features 0.88 0.90 0.85 0.87 -
Averaged Signal Features - - - - 0.22
Transfer Learning Features - - - - 0.77

TABLE V: Average 10 fold cross validation accuracy for ensemble models.

Models

Ensemble Models

CNN Max Pooling & MLP

CNN Max Pooling LSTM & MLP

CNN Average Pooling & MLP

CNN Average Pooling LSTM & MLP

Accuracy Accuracy
GTZAN Ballroom
93.6 92.4
91.5 92.2
94.2 93.8
91.4 92.0

Our ensemble system of CNN Average Pooling and MLP
models achieves an accuracy score of 94.2 % in GTZAN,
which is at-least 0.5% more than the rest of the comparative
systems. One important aspect to note here is the work by
Sturm B. L. in [34]. With rigorous examples and case studies, it
is demonstrated that the perfect system in the GTZAN dataset
would not be able to surpass the accuracy score of 94.5%
due to the inherent noise in the some of the repetitions, mis-
labelings and distortions of the songs. Interestingly, our pro-
posed system achieves accuracy of 94.2%, an almost perfect
score. We also achieve state-of-the-art accuracy of 93.8% in

Ballroom dataset which is 0.7% better than the previous best.

VI. CONCLUSION

In this work we proposed a novel approach for music genre
and style recognition. Firstly variants of CNN and CNN-
LSTM based models are trained on a variety of spectral and
rhythmic features. Secondly, a MLP network is trained on the
one dimensional averaged features & the extracted represen-
tational features from a transfer learning system trained for
music tagging. Finally, these models are combined in a ma-
jority voting ensemble setup. With our experiments we showed
that the ensemble model is effective in greatly improving the

1016



Proceedings, APSIPA Annual Summit and Conference 2018

12-15 November 2018, Hawaii

TABLE VI: Comparative results with other state-of-the-art systems.

Models

Comparison with state-of-the-art systems

Choi et al. [18]
Arabi and Lu [31]
Panagakis et al. [4]
Panagakis et al. [5]
Klapuri et al. [32]

Marchand and Peeters [33]

Proposed System

Accuracy Accuracy
GTZAN Ballroom
89.8 -
90.8 -
91.0 -
93.7 -
- 91.0
- 93.1
94.2 93.8

performance. Our proposed model outperforms the current
state-of-the-art systems and achieves a near perfect score for
musical genre recognition in the GTZAN dataset and musical
style recognition in Ballroom dataset.
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