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Abstract—Among various types of spoofing attacks replay
possess a greater threat to the Automatic Speaker Verification
(ASV) system. In our previous study, we found that the replay
spoof detection is effective when human auditory system is
modeled by power law nonlinearity. In this paper, we design the
replay spoof detection system using power function-based fea-
tures, namely, Power Normalized Cepstral Coefficients (PNCC)
and Q-Log Normalized Cepstral Coefficients (QLNCC). The
PNCC and QLNCC feature sets are noise robust and they
are able to capture the speaker-specific information in noisy
environments. The PNCC feature set uses power law nonlinearity,
however, the QLNCC feature set uses g-log nonlinearity. The
experiments are performed on ASVspoof 2017 challenge version
2.0 database with Gaussian Mixture Model (GMM) as a classifier.
The individual PNCC and QLNCC feature set gives an Equal
Error Rate (EER) of 23.02 % and 24.12 % on evaluation set,
respectively. Furthermore, to capture the possible complementary
information, score-level fusion of PNCC and QLNCC feature sets
with Constant Q Cepstral Coefficients (CQCC) feature set was
performed resulting in reduced EER of 13.02 % and 13.62 %
on evaluation set, respectively.

I. INTRODUCTION

The Automatic Speaker Verification (ASV) system aims to
verify the claimed identity of the speaker using speech samples
provided by the speaker. To use the ASV system for voice
biometric authentication purpose, the ASV system needs to be
robust against transmission channel, intersession recordings,
speaker health, speaker aging, etc. However, nullifying the
effect of these variabilities makes ASV system susceptible
to various kinds of spoofing attacks, namely, impersonation,
voice conversion, speech synthesis, replay [1].

Replay is one of the most easy way to get spoofed as
only simple recorder and playback device is required to
generate the spoofed speech from the target speaker and do
not need any prior speech processing techniques. Hence, it
is more challenging task to detect the replay speech signal.
The key objective during replay detection is to emphasize on
the characteristics of the intermediate devices [2]. Because
replay speech is a convolution of the natural speech signal
with the impulse response of the intermediate devices and
environmental conditions. Hence, it is a blind deconvolution
problem that is still a major research issue.

In the past years, many of the researchers have focused
on the study of replay spoof speech detection (SSD) task.
One of the studies done in the far-field recording condition
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was reported in [3]. The study was done using the approach
of cut and paste to replay speech which was detected with
use of pitch (i.e., fundamental frequency, Fj) and Mel Fre-
quency Cepstral Coefficients (MFCC) feature set [3]. The
spectral bitmap approach is used to identify live and non-
live (recorded) speech [4]. Recently, second ASVspoof 2017
Challenge was organized as a special session focusing exclu-
sively on the replay spoofing attack during INTERSPEECH
2017. The organizers of the challenge provided a common
database for the replay SSD task. Many of the countermeasures
were explored during this challenge. The research findings
of this challenge were, how the replay speech signal gets
affected by the intermediate devices and largely it affects the
high frequency regions. Hence, one of the findings was the
significance of high frequency regions [5]. Moreover, it was
found that use of the Cepstral Mean Variance Normalization
(CMVN) technique helps to discriminate the natural and
replayed speech [5].

In our previous study, we found that the genuine and replay
speech is more distinguishable, when the logarithmic nonlin-
earity in MFCC is replaced with the power law nonlinearity
[6]. In this paper, we explore two more feature sets that are
based on power function family, namely, Power Normalized
Cepstral Coefficients (PNCC) [7] and Q-Log Normalized Cep-
stral Coefficients (QLNCC) [8]. The PNCC feature uses power
law nonlinearity and QLNCC feature uses g-log nonlinearity.
The g-log nonlinearity is the generalization of log function
and example of power function. We developed the replay SSD
system using Gaussian Mixture Model (GMM) classifier for
PNCC, QLNCC feature set. To the best of authors’ knowledge,
this is the first study reporting use of PNCC and QLNCC for
replay SSD task.

II. POWER FUNCTION FAMILY

At the onset of signal, the average auditory nerve firing
rate observes an overshoot, some studies reports that the
human auditory system focuses on the onset than the valley
of power envelope [9]. Hence, the human auditory system can
be mathematically modeled as the function of onset firing rate
and sound pressure level [9]. The power law nonlinearity is
able to approximate this function [10]. The various studies in
speech recognition uses several power function-based features
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[7]. In this paper, we explored two power function-based
nonlinearities, one is power law nonlinearity given by [7]:

y(n) = (s(n))”, (1

where s(n) is input signal, y(n) is output signal and -~y
is some constant. Some studies suggest that normalizing at
q log-domain is efficient than the normal log-domain [11],
[12]. Hence, the second nonlinearity we explored is g-log
nonlinearity and is given by [8]:

s(n)1—9 —1

= @)

y(n) =log,(s(n)) =

Fig. 1 compares the natural and replay speech in power

law and g¢-log domain using their gammatonegrams. The

rectangular box shows the distinguishable points in the natural

vs. replay speech gammatonegrams and the elliptical regions

shows the distinguishable points in gammatonegram obtained
for power law nonlinearity vs. g-log nonlinearity.
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Fig. 1. Comparison of natural vs. replay speech in power law and g-log
domain. (a) speech signal, gammatonegram using (b) power law nonlinearity,
(c) g-log nonlinearity (Panel-I: natural speech, Panel-II replay speech). After
[8].

From Fig. 1(b) and Fig. 1(c), it can be observed that
the power function nonlinearities captures the effect of noise
introduced by the intermediate devices and environmental con-
ditions in replay speech at lower as well as at higher frequency
regions. In addition, they also captures the change in energy
levels at formant frequencies. It can also be observed from
Fig. 1(b) that, the power law nonlinearity shows more distin-
guishable cues at higher frequency regions in gammatonegram
compared to the g-log nonlinearity (elliptically highlighted
region).

III. FEATURE EXTRACTION

The block diagram of the PNCC and QLNCC feature
extraction process is shown in Fig. 2.
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Fig. 2. Functional block diagram of PNCC and QLNCC feature extraction.

A. Power Normalized Cepstral Coefficients (PNCC)

The speech signal is passed through the pre-emphasized
filter in order to emphasize high frequency components in
the signal. The pre-emphasized signal is segmented into short
duration signal with overlapping short-duration windows and
Discrete-Time Fourier Transform (DTFT) is applied to obtain
Short-Time Fourier Transform (STFT) of signal. Furthermore,
the magnitude squared power is passed through gammatone-
shaped filterbank, which uses Equivalent Rectangular Band-
width (ERB) frequency scale. The gammatone filterbank is
designed in such a way that the sum of the squared transfer
function of each filter is equal to one, i.e., each filter in
filterbank must satisfy the following equation [7]:

K/2-1

> G () P=1, 3)

k=0

where G, (€7“*) is transfer function of " filter in gamma-
tone filterbank, wy, is discrete frequency and K is DTFT size.
After the gammatone filterbank block, the short-time spectral
power (FP) is given by [7]:
K/2—1
Pyi,m) = Y [ S(i, )G (%) 7, ()
k=0
where S(i,e7*) is STFT of speech signal s(n), i is frame
index. Furthermore, the spectral power is normalized by the
peak power (Ppy) of the signal and scaled by some constant
po as follows [7]:

Py(i,m)

Py
where Py, is normalized power. In the next step, the
median-time power is obtained by computing the moving

average of spectral power Ps(i,m). The median-time power
in a single analysis frame is given as [7]:

(&)

Pnorm(i» m) = Po

iy,
. 1 .
Pred(i,m) = 1 Z Ps(i',m), (6)
i=i—1

where I is temporal integration factor. This median-time
power is used for power bias subtraction in each filter to
sharpen the power distribution. Once we get the power bias
subtracted signal, the power law nonlinearity is applied to map
the information in power law-domain. The Discrete Cosine
Transform (DCT) is applied to obtain cepstral coefficients.
Only first few coefficients are retained from the decorrelated
features. Next, the Cepstral Mean Normalization (CMN) is
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performed in order to remove the channel effects. In the
last step, the first and second-order dynamic coefficients are
appended to incorporate the long-range temporal dynamics.

B. Q-Log Normalized Cepstral Coefficients (QLNCC)

The feature extraction process of QLNCC feature set is
almost the same as PNCC feature set except last three blocks,
namely, nonlinearity block, DCT and mean normalization.
The power law nonlinearity in PNCC feature set is replaced
with the g-log nonlinearity as per Eq. (2). Furthermore, the
order of last two blocks, i.e., mean normalization and DCT
is reversed. Unlike other feature sets, in QLNCC feature
set, the mean normalization is performed at high frequency
resolution (i.e., before applying DCT). This is motivated from
the studies reported in [13] which shows that applying mean
normalization at low frequency resolution is less effective
compared to applying on high frequency resolution. After
mean normalization, the DCT is applied to decorrelate the
features and first few coefficients are retained. The static co-
efficients are appended with first and second-order derivatives
to capture the dynamics of signal.

IV. EXPERIMENTAL SETUP AND RESULTS

All the experiments are performed on the ASVspoof 2017
challenge V2 database [14]. All speech utterances have a
resolution of 16-bits per sample and sampling frequency of
16 kHz. The database is based on the RedDots corpus and its
replay version. Table I shows the statistics of the ASVspoof
2017 challenge V2 database. All the systems are implemented
with GMM classifier with 512 Gaussian mixture components.
Two GMMs are trained for genuine and spoof class using only
training set of ASVspoof 2017 challenge V2 database.

TABLE 1
STATISTICS OF ASVSPOOF 2017 CHALLENGE V2 DATABASE. AFTER [14]

# Utterances

Subset # Speakers Genuine _ Spoofed
Training 10 1507 1507
Development 8 760 950
Evaluation 24 1298 12008

A. Effect of Gamma in PNCC

The PNCC features are extracted from pre-emphasized
speech using Hamming window of duration 25 ms and 10
ms window shift. Total 40 number of gammatone filters are
used to obtain subband filtered signal. To obtain the medium
duration power I = 5 is used . First 20 static coefficients
are retained after DCT and first and second-order dynamics
are appended to obtain high-dimensional feature vector. The
experiments are carried out for various gamma () values. Fig.
3 shows the graphical representation of effect of gamma values
on system performance. Empirically, we found that, v = 0.04
gives the relatively lower Equal Error Rate (EER) of 20.78 %
and 23.74 % on development and evaluation set, respectively.
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Fig. 3. Graphical representation of effect of « values on system performance.

B. Effect of q in QLNCC

In this sub-Section, we analyze the effect of ¢ value on
system performance developed using QLNCC feature set. The
QLNCC features are extracted using the same parameters used
for PNCC feature extraction. In this experiment, we examine
the effect of ¢ value on system performance by varying ¢ from
0 to 1. Fig. 4 shows the graphical representation of effect of q.
Empirically, we found that ¢ = 0.97 gives the relatively lower
EER of 21.81 % and 24.67 % on development and evaluation
set, respectively.
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Fig. 4. Graphical representation of effect of ‘g’ values on system performance.

C. Score-Level Fusion

The final replay SSD system is developed using the best pa-
rameters from the above experiment (i.e., ¢=0.97 and v=0.04).
Table II shows the results (in % EER) on development and
evaluation set for individual and fused systems. The PNCC
and QLNCC feature sets are fused with CQCC feature set
at the score-level. The individual CQCC+GMM system is
baseline system provided by the organizers of ASVspoof 2017
challenge having an EER of 19.04 % on evaluation set. When
CQCC feature set is fused with PNCC feature set, the % EER
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Fig. 5. DET curves for (a) development set, and (b) evaluation set.

gets reduced to 12.98 % from its individual EER of 23.74 %.
However, the score-level fusion of CQCC and QLNCC feature
sets gives % EER of 13.27 from its individual EER of 24.67
%. Fig. 5(a) and Fig. 5(b) shows the Detection Error Trade-
off (DET) curves of individual as well as fused systems for
development and evaluation set, respectively.

TABLE 1T
RESULT ON DEVELOPMENT AND EVALUATION SET

EER (%)
Feature Set Development ~ Evaluation
CQCC 12.81 19.04
QLNCC (¢ = 0.97) 21.81 24.67
PNCC (v = 0.04) 20.78 23.74
CQCC + QLNCC 9.49 13.27
CQCC + PNCC 8.73 12.98

V. SUMMARY AND CONCLUSIONS

The replay attack is the simplest and most accessible spoof-
ing attack. Hence, the performance of ASV system degrades
to the greater extent in the presence of replay attacks. In
this study, we developed the replay spoof detection system
using power function-based feature sets, namely, PNCC and
QLNCC. It is observed that the genuine and replay speech
are more distinguishable after applying power law and g-log
nonlinearity. The PNCC and QLNCC feature sets are fused
with CQCC feature set at the score-level to develop final
spoof detection system. The final system performance is much
better than the baseline CQCC system. Our future work will be
directed to explore more power function-based features along
with some other classifiers, such as CNN, SVM, BLSTM, etc.
to detect replay attacks.
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