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Abstract—Exposure blending generates a high dynamic range
(HDR) image from multiple exposure images. However, when
photographing in a low-light scene, these images are deteriorated
due to various types of noise, and then it brings down the dynamic
range. Existing methods based on pixel-wise blending cannot
sufficiently reduce noise, especially in the case of a few input
images. This report proposes a convolutional weight optimization
method for exposure blending that robustly removes mixed noise
and under/over-exposed pixels with a few inputs. In blending
each pixel, the proposed method convolves neighboring pixels
and generates a noise-free HDR image. The convolution of local
regions enables to enhance the denoising capability of image
blending. To find a set of weight maps for convolution, we
introduce a weight optimization problem as a convex optimization
problem, in which Huber loss function is utilized as a fidelity
measure in blending to make the method robust to outliers,
and solve the optimization problem by using the primal-dual
splitting method. The weighted sum of the noisy input images
with the estimated weight maps makes a noise-free HDR image.
Experimental results show the validity of the proposed method
compared with several conventional methods.

I. Introduction

High dynamic range (HDR) imaging has ability to represent the
amount of light in a scene with a broad dynamic range. Among
several methods for HDR image generation, the most commonly used
approach is to blend a multiple exposure image set captured by a
consumer camera [1]–[11].

It is well known that the long shutter speed with a low ISO setting
yields a noise-free image, however, ghosting artifacts often occur in
an HDR image obtained by blending them. To avoid these artifacts,
the use of a high ISO setting is efficient, because it is increasing
shutter speed. Although high ISO shooting enhances noise as well as
signal. Noise removal expands the dynamic range of an image, which
is usually defined by the ratio between the maximum achievable
signal intensity and the maximum level of camera noise.

Simply taking the mean of multiple images can help to reduce
the amount of random noise with a lot of input images. However, to
take dozens of images is not practice, in terms of time and storage.
Several authors have recently investigated more effective exposure
blending techniques based on pixel-wise weighting [1]–[8]. These
methods usually generate a noise-free HDR image with less than ten
images. Moreover, our previous work [12] can generate better HDR
images than the other methods, especially a few inputs. However,
these weighting methods cannot yield a sufficiently smooth HDR
image when input images are taken with a high ISO setting in a
low-light condition. This is because these methods are based on
the assumption that the noise in an HDR image follows a Gaussian
distribution, however, the image practically contains other types of

noise, which follow some non-Gaussian distributions, and outliers.
These methods do not have sufficient ability to remove them.

In this paper, we propose a convolutional exposure blending
method that robustly removes mixed noise and under/over-exposed
pixels by blending pixels in local regions. In our method, each pixel
of a noise-free HDR image is generated by the weighted sum of local
region pixels of noisy input images, and weights used in blending are
determined by solving a proposed convex optimization problem. One
of the features in our method is that we characterize data-fidelity by
using the Huber loss function [13] that relieves influence from various
outliers. Then, the convolution of local regions enables to enhance the
denoising performance. An optimal solution of the proposed problem
can be found via the primal-dual splitting (PDS) algorithm [14]. We
show that the proposed method robustly removes various types of
noise and saturated-pixels compared with conventional approaches.

II. Preliminaries
A. Pixel-Wise Exposure Blending

Let N be the number of pixels in an image, and ûk ∈ R3N ,
(k = 1, 2, · · · ,K) be K exposure images. The conventional methods
based on pixel-wise exposure blending combine the input images and
reconstruct an HDR image r ∈ RN by

r =
∑K

k=1 wc (ûk) ⊗ ũk∑K
k=1 wc (ûk)

, (1)

where ũk ∈ RN is the k-th irradiance image obtained by ũk :=
g−1 (ûk) /tk (tk and g−1 are the exposure time of the k-th image
and inverse camera response curve function [3], respectively, which
cancels the nonlinear relationship between an irradiance ũk and a
camera output ûk). Each image is weighted by a weight function
wc. The notation ⊗ denotes the element-wise multiplication, and the
division is also performed element by element.

In the conventional methods [1]–[3], [8], the weight function is
specified to be small for the pixel values near the pixel saturation 0
and 1, high for the middle intensities, where the dynamic range of
all the pixels is normalized in [0, 1]. An example of the weighting
functions used in the conventional method [2] is given as

wc(x) :=
{ 2x, if x ≤ 0.5,

2(1 − x), if 0.5 < x. (2)

The role of the weight is to discard saturated pixels.

B. Primal Dual Splitting Algorithm
The primal-dual splitting (PDS) method [14] is well-known as one

of the most flexible solvers for convex optimization, which finds an
optimal solution of a convex optimization problem of the form:

min
x

F(x) +G(x) + H(Lx), (3)
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where F, G, and H are proper, lower semi-continuous, and convex
functions, and F is differentiable, and L is a linear operator. In the
PDS algorithm, the two proximity operators1 are iteratively computedx(τ+1) = proxγ1G

(
x(τ) − γ1

(
∇F

(
x(τ)

)
+ L∗y(τ)

))
,

y(τ+1) = proxγ2H∗
(
y(τ) + γ2L

(
2x(τ+1) − x(τ)

))
,

(4)

where ∇F is the gradient of F, and L∗ is the adjoint of L. The
operator proxγ2H∗ can be computed by

proxγ2H∗ (z) := z − γ2proxH/γ2

(
z
γ2

)
. (5)

Under appropriate conditions for γ1 and γ2, the sequence (x(•))•∈�
weakly converges to an optimal solution of (3) (see [14] for more
details).

III. ProposedMethod
A. Outline

Figure 1 shows the flowchart of the proposed method. Our
objective is to simultaneously perform the exposure blending and
denoising. As is performed in the conventional methods [2], [3], [8],
[12], we first linearize an input multiple exposure image set by Mit-
sunaga et al.’s method [3] to cancel the nonlinearity. Then, we obtain
an initial HDR image by using the conventional blending method
discussed in Sec. II-A. To achieve noise reduction, optimal weight
maps are obtained by solving a convolutional weight optimization
problem. Finally, we obtain a noise-free HDR image by blending
input images with the estimated weight maps. Note that the proposed
method performs RGB channels independently.

Our contributions are summarized as follows:
1) Convolutional exposure blending : The denoising performance

of pixel-wise exposure blending is limited with a few inputs.
To solve this problem, we introduce a convolutional exposure
blending method. In this strategy, each blended pixel is ob-
tained by the convolution of each local region (see Fig. 2).

2) Huber loss function : In a low-light condition, images taken
with a high ISO setting are degraded by random and impulsive
noise. To robust to such mixed noise, we use the Huber loss
function as a fidelity term. This function involves a quadratic
function near the origin and a linear function away from, it is
robust to outliers (see Fig. 3).

B. Notation for Convolutional Exposure Blending
Let ũk ∈ RN , (k=1, 2, . . . ,K) and h ∈ RN be linearized K exposure

images and a blended image, respectively. Then, ũk,i ∈ RM be the i-th
sub-vector of ũk in the i-th local region centered at i-th pixel, where
M is the number of pixels in the local region. For the range of local
regions, we assume a squared window or vertical/horizontal-adjacent
pixels and so on. To achieve image blending, we convolve the i-th
local region, for i=1, 2, . . . ,N, by

ri :=

∑K
k=1

∑M
j=1 wk,i, jũk,i, j∑K

k=1
∑M

j=1 wk,i, j
, (6)

where ũk,i, j and wk,i, j are the j-th pixel of the sub-vector ũk,i and
the weight map wk,i in the i-th local region, respectively. When the
weights are normalized as

∑
k
∑

j wk,i, j = 1 for all i, it is rewritten
as ri :=

∑
k
∑

j wk,i, jũk,i, j. To express the image blending operation
in matrix form, we replicate the input images by shifting each j-th
pixel of local regions to the i-th position and obtain shifted images
ul ∈ RN , (l = 1, 2, . . . , L,where L = KM). Then, convolutional image
blending in matrix form is defined as

h = Uw :=
L∑

l=1

ul ⊗ wl, (7)

1A proper lower semi-continuous convex function f over RN is said to
be proximable if its proximity operator for any γ > 0 can be calculated by
proxγ f (x) := arg min

y
f (y) + 1

2γ ∥x − y∥2.

Fig. 1. Flowchart of the proposed method.

Fig. 2. Outline of Exposure Blending.

where U := [diag(u1) diag(u2) . . . diag(uL)] (∈ RN×LN), wl ∈ RN is
the l-th weight map corresponding to ul, and w := [w⊤1 w⊤2 . . .w

⊤
L ]⊤(∈

RLN).

C. Problem Formulation
We find a set of optimal weight maps w∗ such that generating

a noiseless blended image h∗. The proposed convolutional weight
optimization problem is defined by

min
w
ρδ,h(Uw) + α∥DUw∥1 s.t. w ∈ C,

L∑
l=1

wl ∈ E (8)

where h(∈ RN) is a noisy HDR image obtained by the standard HDR
image generation method discussed in Sec. II-A, D := [D⊤v D⊤h ]⊤ (∈
R2N×N) is the first order differential operator, and Dv,Dh ∈ RN×N

are the vertical and horizontal first order differential operators with
Neumann boundary. The first term penalizes the similarity between a
noisy HDR image h and a blended image obtained by the estimated
weight maps w∗, while the second term, which is well-known as
the total variation regularization [15]–[18], promotes the spatial
smoothness of the blended image. The parameter α is a balancing
weight for the two terms. The convex sets C and E are defined as

C := {x ∈ �LN | xn ∈ [0, 1] (n = 1, 2, · · · , LN)}, (9)
E := {x ∈ �N | |xn − 1| ≤ ξ (n = 1, 2, · · · ,N)}. (10)

By the constraints in (8), all the weights are restricted to fall within
the range of [0, 1], and the sum of the L weights should ideally be
close to 1 in order to preserve the energy after the blending operation.
In this paper, a tolerable error ξ is set in consideration of calculation
error.

As is discussed in Sec. III-A 2), we use the following Huber loss
function [13] for the date-fidelity in the first term of (8):

ρδ,v(x) :=
N∑

n=1

Hδ(xn − vn), (11)

where

Hδ(x) :=


x2

2
, if |x| ≤ δ,

δ|x| − δ
2

2
, otherwise.

(12)

Since the function works as a quadratic function for small values and
a linear function for large values (see Fig. 3), random and impulsive
(outlier) noise can be efficiently suppressed in image blending. The
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Fig. 3. Fidelity functions: The blue dashed and the red lines indicate the
ℓ2-norm and the Huber loss function, respectively, where δ determines the
boundary between quadratic and linear parts.

Huber loss function is differentiable, and the gradient ∇ρδ,v is given,
for n=1, 2, . . . ,N, by [19],

[∇ρδ,v(x)]n =

 xn − vn, if |xn − vn| ≤ δ,
δ, if xn − vn > δ,
−δ, if xn − vn < −δ.

(13)

D. Reformulation and Optimization
By using the indicator functions2 of C and E, the problem (8) is

reformulated into an unconstrained problem

min
w
ρδ,h(Uw) + α∥DUw∥1 + ιC(w) + ιE(Ew) (14)

where E ∈ RN×LN computes the sum of the L images, which are
defined as E := [Id Id . . . Id] (Id ∈ RN×N is the identity matrix). Since
the optimization problem (14) is convex, we solve it by using the
PDS method described in Sec. II-B. The correspondence with each
term of the objective function defined in (3) is given as follows:

F(x) := ρδ,h(Ux),
G(x) := ιC(x),

H(Lx) := α∥DUx∥1 + ιE(Ex),

L :=
[ DU

E

]
(∈ R3N×LN).

From Sec. II-B, an optimal solution can be obtained by alternately
calculating the following equations:w(τ+1) = proxγ1ιC

(
w(τ) − γ1

(
U⊤∇ρδ,h

(
Uw(τ)

)
+ L⊤y(τ)

))
,

y(τ+1) = proxγ2H∗
(
y(τ) + γ2L

(
2w(τ+1) − w(τ)

))
,

(15)

where y := [y⊤1 y⊤2 ]⊤ (y1 ∈ R2N and y2 ∈ RN). The computation of
∇ρδ,h in (15) is given by (13). The operator proxγ2H∗ in (15) is
independently computed w.r.t. y1 and y2 as follows:

y(τ+1)
1 = proxγ2∥·∥∗1

(
y(τ)

1 + γ2DU
(
2w(τ+1) − w(τ)

))
, (16)

y(τ+1)
2 = proxγ2ι

∗
E

(
y(τ)

2 + γ2E
(
2w(τ+1) − w(τ)

))
, (17)

The proximity operator for the ℓ1-norm is given by a soft-thresholding
type operation as [17], [20]. The proximity operators for ιC and ιE
are calculated by simple clipping operations with the range of [0, 1]
and [1 − ξ, 1 + ξ], respectively, as [12].

Once the optimal solution w∗ is estimated, we obtain a noise-free
HDR image by h∗=Uw∗.

2For any closed convex set S, the indicator function is defined by ιS(x) :=
0, if x ∈ S;∞, otherwise.

IV. Experimental Results
To show the effectiveness of our method, we applied it to images

artificially degraded by various types of noise and compared with
several conventional methods. Furthermore, the proposed method is
applied to real images taken with a high ISO setting.

A. Artificial Noise Removal
For quantitative evaluation, we generated “Ground truth” HDR

images as follows:
(i) Input multiple exposure images: We took multiple exposure

images with ISO 100, and then three images, i.e., short, middle
and long exposure images, were obtained by varying the shutter
speed while other camera parameters were fixed. For avoiding
camera shake, we used a tripod.

(ii) Noise-free HDR image generation: The images obtained by the
step (i) were simply combined by (1) with the weight function
(2), yielding noise-free HDR images.

We compared our method with the two pixel-wise exposure
blending methods; one is Debevec and Malik’s method [2], i.e.,
an HDR image is obtained by (1), and the other is our previous
work [12]. Moreover, our results were compared with the state-
of-the-art denoising method, BM3D [21]3. For fair comparison, we
performed BM3D before and after image blending. We call the two
approaches as “BM3D+MEI” and “BM3D+HDR”, respectively.
For the quality metric, we used the nonlinear SNR (NSNR) of
generated HDR images [12]. In each method, we adjusted the degree
of noise removal so as to obtain visually best restoration results, i.e.,
maximizing smoothness while keeping the edges of images as much
as possible. In the proposed method, we used a center pixel and its
adjacent four pixels (totally five pixels) as local regions, and extended
image boundary by periodic expansion. The tolerable error of (10) is
set to ξ ≤ 10−4.

We show the robustness of the proposed method through mixed
noise removal. Mixed noise considered in this experiment includes
mixed Gaussian-impulse noise and mixed Poisson-impulse noise. For
the case of Gaussian noise, we set the variance to σ2 = 4.0 · 10−3.
For the case of Poisson noise, we generated each k-th noisy exposure
image by û′k =

1
λ

DP(λûk), where ûk, û′k are the k-th noise-free and
noisy images, respectively, and DP is the Poisson distribution (see
[22], [23]). The scaling parameter λ was set to 0.3. We considered
a salt-and-pepper noise as impulse noise and added it to the images
degraded by Gaussian and Poisson noise. Note that the probability
of impulse noise was set to 8.0 · 10−4.

Table I shows the comparison of the NSNR for mixed Gaussian-
/Poisson-impulse noise. One observes that our method achieves the
best NSNR in most scenes.

In Fig. 4, some closeup of resultant HDR images are shown for
mixed Gaussian- and Poisson-impulse noise, respectively. In this
paper, instead of directly showing an HDR image, a low dynamic
range image tone-mapped by Reinhard et al.’s local operator [24] was
shown. One sees that the proposed blending method can effectively
remove Gaussian/Poisson noise and impulse noise simultaneously,
and yield the noise-free HDR images with preserving edges. Since
employing the ℓ2-norm for image fidelity, our previous work hardly
removes impulse noise. Although those noises are almost removed by
the BM3D-based methods, the details are over-smoothed, especially
edges are lost in Fig. 4-(b). The proposed method based on the Huber
loss function can preserve the details while removing mixed noises.

B. Real World Example
We applied the proposed method to multiple exposure images

taken with a high ISO setting. Figure 5 shows all the resulting images.
Note that the two scenes were taken with ISO 12800, and used
for the conventional methods and our method as inputs. One sees
that our method outperforms the conventional methods. From Fig. 5-
(a), although the results of our previous work and “BM3D+HDR”
remove strong noises, the details of bright regions are over-smoothed.

3We used the source code provided by the authors at http://www.cs.tut.fi/
∼foi/GCF-BM3D
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19.33 23.19 22.54 25.09 25.72
(a) Scene 1 in the case of Gaussian + Impulse noise

22.72 24.47 23.25 23.47 26.68
(b) Scene 2 in the case of Poisson + Impulse noise

Fig. 4. Closeup of some results and their NSNR: (from left to right) Debevec and Malick [2], Our previous work [12], “BM3D+HDR”, “BM3D+MEI” and
Our method.

TABLE I
Comparison of NSNR, Deb.: Debevec andMalick [2], Prev.: Our previous
work [12], “BM3D + HDR”: Applying BM3D [21] to the HDR image

obtained by [2], “BM3D +MEI”: the multiple exposure images denoised by
BM3D and blended by [2] and Ours.

BM3D BM3D
Noise Scene Deb. Prev. + + Ours

HDR MEI
1 19.33 23.19 22.54 25.09 25.72

Gaussian 2 20.59 23.27 20.28 22.42 24.21
+ 3 19.80 24.39 23.85 25.38 26.67

Impulse 4 20.53 24.19 22.95 25.67 26.45
5 20.79 24.72 24.97 26.02 25.83
1 21.23 24.22 24.05 25.07 27.79

Poisson 2 22.72 24.47 23.25 23.47 26.68
+ 3 21.81 25.36 25.08 26.59 29.22

Impulse 4 22.99 25.37 24.78 26.81 28.87
5 22.01 25.46 25.61 25.26 27.26

The details of the “BM3D+MEI” were lost, while noise remains
on the lower right of the upper closeup image. In addition, over-
smoothing artifacts occurred in both a dark and a bright region. Our
method can remove sensor noise efficiently, and preserve the image
details in both dark and bright regions. Figure 5-(b) also shows that
our method can remove strong noise, while preserving image details

in both dark and bright regions.
From the results of both the artificial and sensor noise removal

experiments, it was confirmed that the proposed blending method is
more robust than the existing methods.

V. Conclusion
In this paper, we have proposed a convolutional exposure blending

method for HDR image generation, in which Huber loss function
is introduced as data-fidelity to robust mixed noise. In our method,
convolutional weights for blending can be estimated by solving a
proposed convolutional weight optimization problem that can robustly
relieve various types of noise including mixed noise contamination
with a few inputs. The optimization problem is solved by an efficient
algorithm based on primal-dual splitting method. To show the validity
of using the Huber loss function as data-fidelity, we applied the
proposed method to noisy multiple exposure images degraded by
artificial noise or sensor noise. Experimental results showed the
robustness of the proposed method to various types of noise.
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