
Data Hiding in MP4 Video Container
based on Subtitle Track

ChuanSheng Chan∗, KokSheik Wong∗, Imdad Maungmuang†,
∗ School of Information Technology, Monash University Malaysia, Malaysia.

† Faculty of Computer Science and Information Technology, University of Malaya, Malaysia.

Abstract—This paper proposes a data hiding method in MP4
container format. Specifically, the synchronization between sub-
title and audio-video tracks is exploited to hide data. The time
scale is first scaled, and the sample duration pair is modified to
hide data. The proposed method is able to hide data reversibly
when the payload size is relative small, and it switches to the
irreversible mode to offer higher payload. Although synchroniza-
tion between audio-video and subtitle tracks are manipulated, the
delay or ahead in displaying subtitle is imperceptible. The filesize
of the processed MP4 file is also completely preserved. Subjective
evaluations are carried out to verify the basic performance of the
proposed method.

I. INTRODUCTION

Data hiding is the art and science of inserting a payload
into a content [1]. A payload is a specific piece of data
encoded in a binary representation and it can be derived
from the host, external to the host or the mixture of both,
depending on the application. Owing to the advancement of
internet technologies, cloud computing and the ever increasing
adoption of mobile devices, information are significantly more
accessible nowadays. One of the most popular multimedia
content circulated in the web is video. The reason is mainly
due to the increased utilization of video streaming sites such as
YouTube, Vimeo, DailyMotion etc. by the internet users, with
YouTube leading the pack by being the most visited video
sharing website. According to statistics [2], Youtube is the
second mostly visited website as of March 2018.

While video is able to provide simultaneous and continuous
audio-visual stimulation, subtitle, which is the text-based de-
scriptions of the dialog or commentary of a video, is able to
provide different experience in watching a video. For example,
someone with hearing impairment will rely on the subtitle as
supplementary information in order to understand the video.
By using sub-title, non-native speaker can enjoy the original
production of foreign movie without dubbing the movie into
the local language. Another closely related technology is called
closed-captioning, where it also includes non-dialog audio as
well such as ”(panting)”, ”(bird chirping)”, etc.

In order to efficiently deliver multiple tracks such as en-
coded video (e.g., H.265/HEVC, VP9), audio streams (e.g.,
MP3, AAC), and subtitle / closed-caption, a container format is
utilized. A container also consists of metadata that governs the
playback and synchronisation of the tracks. Some examples of
video container format include MP4, MKV, FLV, WMV, MOV,
and WebM. Despite the variety of choices, 69% of the web
videos and 58% of the mobile videos use MP4 container [3].

Being the preferred container, MP4 offers various features [4].
For instance, MP4 is supported by most platforms and major
media players, where there is comparably less quality loss with
higher degree of compression. Besides, it can also store data
types other than video and audio, such as object descriptors,
scene descriptors and other object oriented file structures and
MPEG features.

Given the ease of capturing and storing a video nowa-
days, users and administrators wish to have some mechanism
for them to label videos as well as linking related videos.
Streaming companies may want to insert a watermark in each
video uploaded to their platform in order to trace back the
illegally downloaded and distributed videos elsewhere on the
internet [5]. The extra features should be accomplished by
introducing minimal or zero distortion to the host content and
as transparent as possible to prevent reverse engineering.

While various techniques were put forward to insert data
into the image, audio and video, only a handful of techniques
are designed to insert data into multimedia container format.
Specifically, Jokay [6] hides data into MP4 container by
exploiting odd/even parity of GOP structure. Cosimo [7]
introduced a steganographic application called OpenPuff Tool,
which manipulates selected flags in MP4 container to hide
data. However, the method used in this tool [7] has been de-
feated by the steganalysis proposed by Sloan et al [8]. Another
steganographic tool [9] injects True-Crypt container (in which
itself is an encryption container) within a MP4 container to
form a hybrid MP4/TrueCrypt container file. Specifically, the
True-Crypt container is inserted into the mdat box and the
stco chunk offset is modified to point to the position of actual
media data, i.e., audio or video. Recently, MaungMaung [10]
propose to hide the perceptual hash of the video frames into
audio samples and the audio hash vector is embedded into
synchronization information into MP4 container, where both
the video and audio tracks are packed within a MP4 container.

This work aims to put forward a method to hide data into
MP4 container by exploiting the subtitle track. To the best
of our knowledge, this is the first of its kind, although there
are some existing works that hide subtitles into the video
track, including [1]. Unlike the synchronization between the
audio and video tracks, the error in synchronization between
sub-title and audio-video tracks are less noticeable. Although
it is recommendation that each subtitle should appear for at
least 0.3 seconds per word [11], there is no upper bound to
the display duration. Therefore, the display duration can be

1128

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018



exploited for data hiding purpose, as long as the duration
of each subtitle does not overflow to the display time of
its next subtitle. In this work, the time scale is first scaled,
and the sample-duration pairs are modified to hide data.
Experiments are carried to verified the basic performance of
the proposed method. The proposed method is able to insert
data reversibly when the payload size is small, and it switches
to the irreversible mode to offer higher payload.

II. PRELIMINARY

MPEG-4 Part 14, or in short, MP4, is a digital multimedia
container format developed by Motion Picture Expert Group
(MPEG) and standardised by International Organization for
Standardization (ISO). The file format specification is based
on QuickTime file format which is developed by Apple Inc.
The only official and the most common filename extension
for MPEG-4 Part 14 is .mp4, although there are also several
other extensions which serve different purposes. For example,
m4a which only stores audio stream, m4b which stores audio
book file, m4r stores ringtone file in iPhone, etc. An MP4
container can hold video stream encoded in MPEG-H Part 2
(H.265/HEVC), MPEG-4 Part 10 (H.264/AVC), MPEG-4 Part
2, etc. as well as audio stream encoded in MPEG-1 (Layers
I, II, III), MPEG-2, AC-3, subtitles, etc.

The container is composed of objects called boxes as shown
in Fig. 1. In detail, each box in the structure is made up of
three parts, namely size, type and data. In a typical 32-bit MP4
file, size and type each occupies 4 bytes. The first four bytes
store the size of the entire box, the next following four bytes
form the characters code identifier of the particular box and
data assumes a variable length. In most cases, the term header
refers to the first eight bytes, which is the combination of size
and type, and it is treated as an unique identifier of each box.
Each box can be categorised into parent / container and child
box. A parent / container box is the one which contains other
boxes (sub-boxes) in its data section and a child box is the one
which contains information. Despite the existence of various
top-level boxes, only three top-level boxes are housing the
primary information. They are ftyp (file type box) that stores
the identification information of the MP4 file, moov (movie
header box) that stores the metadata of the streams, and mdat
(movie data box) that stores the actual media data. Specifically,
moov independently stores the metadata for each multimedia
streams / track (i.e., audio, video, subtitle etc.) available in the
container.

A. Streams synchronization in MP4

There are three important entities in each track which are
utilized as the synchronization information. The first entity τ
is utilized for frame timing during playback. τ exists within
mdhd (media header box), which is in turn contained within
moov. The other two entities lie within another box called stts
(decoding time to sample box). In this particular box, there is
a table which contains one or more 2-tuple (sample count s,
duration δ) entry. All entries in the table determine the number
of samples (i.e., video frame, audio sample or subtitle sample)

Fig. 1: The general structure of an MP4 box [10].

and how long (in unit of timescale specified in τ ) each sample
will be displayed/played. During the playback of the track, the
duration of an entry will be converted into unit per second by
multiplying a time base. For example, if an entry has the value
of (s = 1, δ = 20) and the timescale for the track is 60, it
implies that the particular sample will be displayed/played for
(1/60× 20) = 0.33 secs.

III. DATA HIDING IN SUBTITLE TRACK

In this work, we exploit the synchronization between the
subtitle track and the audio-video tracks to hide data. It is
assumed that the subtitle track is present in the MP4 file and
contains some texts. In other words, the MP4 file chosen as the
host should be soft-subbed, i.e., a type of video that contains
subtitles where its display can be turned on or off in the media
player, instead of a hard-subbed video where the subtitle texts
are burnt into the frames of the video.

A. Pre-processing Time Coordinate System

Before embedding the data into the host, we will modify
τ and δ while maintaining the original audio-video-subtitle
synchronization. Consider an instance of τ = 30 and δ = 1
which implies that a unit of duration is (1/30) or 0.03̇ sec.
If we update the values to τ = 60 and δ = 2, the ratio is
still maintained because a unit of duration now represents
(1/60) or 0.16̇ sec. but since the value of the duration is
doubled, the final duration is still (1/30) or 0.03̇ sec. Simi-
larly, we can update the value of τ to a much bigger value
(e.g., τ = 90, 120, 150, · · · ) and update the duration δ (e.g.,
3, 4, 5, · · · ) with the ratio to keep the synchronization process
unchanged. Although τ and δ are capped at 2147483647 (i.e.,
4-byte signed integer), they cannot be set at the said maximum
value as considered in [10]. It is because the display duration
of a subtitle is significantly longer than that of a audio sample.
Hence, when the duration of a subtitle is scaled accordingly to
maintain synchronization, an error will be raised when there is
an attempt to write a value of δ which exceeds the permissible
maximum. In order to minimize the chances of this error, the
system needs to be assigned a smaller τ value as the constant
to reduce the multiplier.

1129

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



TABLE I: Summary of test videos

Video Total Total
Sequence Frames Subtitles
TED [13] 20248 315

Bloomberg [15] 8759 77
National Geographic [16] 5622 50

Fibonacci [17] 16709 272
Car [18] 10781 274

TABLE II: Length of payload that can be hidden (bits).

Video Irreversible Reversible
TED [13] 5048 215

Bloomberg [15] 776 10
National Geography [16] 504 8

Fibonacci 2176 17
Car 2192 15

TABLE III: Mean square error when treating least significant
byte as an integer in the range of [0, 255] for data hiding.

Video MSE
TED 392.45

Bloomberg 1547.86
National Geography 998.62

Fibonacci 10.67
Car 10.22

0 50 100 150 200 250
Value

0

50

100

150

200

250

F
re

q
u

e
n

c
y

Fig. 2: Distribution of δ for the test video [13].

Due to the the theoretical limit of average human eyes (i.e.,
see up to 1000 FPS) and the fact that two modes proposed are
making use of the least significant bytes, a formula to update
τ is set as d255000/τ0e, where τ0 is the original τ value in
the MP4 container. Ultimately, the reason of increasing τ to
a huge value is to ensure that the perceptual difference of
the subtitle synchronization before and after the data hiding
is minimal so that it is simply unnoticeable by comparing the
videos side by side. From a different perspective, if τ is a
small value (e.g., τ = 1), a unit of duration is (1/1) = 1 sec.
Now if we increase the duration of a sample merely by 1, we
are increasing the duration of it by 1 sec., which will in turn
produce a very obvious difference.

B. Data Hiding using (s, δ) pairs
The underlying data hiding mechanism is to modify the least

significant byte of δ, which is represented an 4-byte signed

integer. For example, given a duration with the value of 61410,
it is equivalent binary representation is 00000000 00000000
00000010 011001102. Hence only the least significant byte
(i.e., 01100110) will be manipulated based on the payload,
where 8 bits can be hidden. In this work, the entire byte is
replaced by a byte-segment of the payload. Since the actual
display time, in unit of second, of a specific subtitle entry is
computed based on the equation below

1

τ
× δ, (1)

larger τ will lead to less out-of-sync between the subtitle track
and the audio-video tracks when the least significant byte of
δ is consistently exploited for data hiding.

Further analysis reveal that the least significant byte of δ
tend to cluster. An example is shown in Fig. 2, where the
peak appears at the value of 28, with many empty bins.
Therefore, when the payload size is smaller than the frequency
of the peak bin, it is suitable to deploy the histogram shifting
technique [12] to manipulate the least significant byte of δ to
reversibly hide data.

IV. EXPERIMENT

Due to the lack of suitable soft-subbed MP4 files available
on the internet, the videos used in the experiments are pro-
duced by re-encoding a standalone MP4 file at 30 frames per
second and its corresponding SRT file with a video encoding
software called HandBrake [14]. For experiment purpose, we
set τ = d255000/τ0e and since τ0 = 90000, τ = 270000. The
test videos used in all our experiments are detailed in Table I.
A representative frame of each video, along with the sub-title
displayed, are shown in Fig. 3. For each movie, the frame
resolution is 1280× 720 pixels encoded with H.264, and the
audio track is encoded with AAC. It is verified that all hidden
data can be extracted, and the filesize remain unchanged. It
is also confirmed that, the display and duration of the subtitle
texts appear natural, and there is no noticeable differences
between the original and processed videos.

The number of bits which can be hidden into each MP4
file are recorded in Table II. Naturally, a longer video or
a video with more conversations will have more subtitles,
hence more bits can be hidden. On average, 0.153 bits can
be hidden into each frame, which translates to 4.59 bits per
second for a video at 30 frames per second. Without causing
any bitstream size increment. In addition, when operating in
the reversible mode through histogram shifting, the length of
payload reduces significantly as recorded in Table II, although
some data can still be hidden.

Since the least significant byte of the duration δ parameter
for each subtitle is modified, we compute the mean square
error (MSE) between the new and original durations. The
results are recorded in Table III. For analysis purpose, the
least significant byte of the duration parameter δ is treated
as an unsigned integer in the range of [0, 255]. Although the
MSE appears to be large in terms of integer, the actual time

1130

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



(a) TED (b) Bloomberg (c) National Geography

(d) Fibonacci (e) Car

Fig. 3: Representative frame of each video with sub-title displayed.

difference is small. Specifically, since ∆δ ∈ [−255, 255], the
differences before and after data hiding, in the unit of second,
will be bounded by range of[
−255

τ
,

255

τ

]
=

[
−255

d255000/τ0e
,

255

d255000/τ0e

]
= [−β, β],

(2)
where β = 0.00094. In other words, the difference in display
duration is less than 1 mili-second, which is imperceptible to
the human visual system. In fact, based on the current setting,
more information can be hidden by considering more bytes of
δ, as long as the recommendation of 0.3 per words is satisfied.

When compared to the conventional data hiding method [10]
designed for the MP4 container format, the proposed method is
able to preserve the bitstream size irregardless of the length of
the video. Similar to [10], the proposed method can also inject
empty subtitles to increase the (s, δ) entries so that more data
can be hidden, but at the expense of bitstream size increment.

V. CONCLUSION

In this work, a data hiding method exploiting the sychro-
nization between subtitle and audio-video tracks are proposed
by means of manipulating the display duration of each subtitle.
Data can be hidden without causing noticeable delay or ahead
in displaying the subtitles while maintaining bitstream size of
the MP4 container. When the length of the payload is small,
the proposed method can reversibly hide data into the MP4
container format.

Our future work joint utilization of data hiding in text and
the proposed method. Analysis will also be carried for closed-
caption texts.

REFERENCES

[1] Yiqi Tew and KokSheik Wong. An overview of information hiding in h.
264/avc compressed video. Circuits and Systems for Video Technology,
IEEE Transactions on, 24(2):305–319, 2014.

[2] Alexa top 500 global sites. https://www.alexa.com/topsites, 2018 (ac-
cessed April 12, 2018).

[3] Jon Orlin. Survey: Mp4 is top format for web and mobile videos, 2012
(accessed April 12, 2018).

[4] Mp4 file format usage and compression techniques, 2014 (accessed April
12, 2018).

[5] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton
Kalker. Digital watermarking and steganography. Morgan Kaufmann,
2007.

[6] M Jókay. The design of a steganographic system based on the
internal mp4 file structures. International Journal of Computers and
Communications, 5, 2011.

[7] Cosimo Oliboni. Openpuff v4.00 steganography and watermarking, Jul
2012.

[8] Thomas Sloan and Julio Hernandez-Castro. Steganalysis of openpuff
through atomic concatenation of mp4 flags. Digital Investigation, 13:15–
21, 2015.

[9] TrueCrypt Foundation. Truecrypt.
[10] Imdad MaungMaung, Yiqi Tew, and KokSheik Wong. Authentication

of mp4 file by perceptual hash and data hiding. Malaysian Journal of
Computer Science, Accepted on June 2018.

[11] Subtitle guidelines. http://bbc.github.io/subtitle-guidelines/, 2018 (ac-
cessed June 7, 2018).

[12] Zhicheng Ni, Yun-Qing Shi, N. Ansari, and Wei Su. Reversible
data hiding. IEEE Transactions on Circuits and Systems for Video
Technology, 16(3):354–362, March 2006.

[13] TED. Inside the mind of a master procrastinator — tim urban.
https://www.youtube.com/watch?v=arj7oStGLkU, 2016.

[14] The HandBrake Team. Handbrake.
[15] Bloomberg. How masayoshi son became an eccentric dealmaker.

https://www.youtube.com/watch?v=cDpTPrfw1mQ, 2018.
[16] National Geographic. Re-envisioning reality - tech+art — genius:

Picasso. https://www.youtube.com/watch?v=T9chHEEp-0M, 2018.
[17] Yongle Li. A lecture on fibonacci series.

https://www.youtube.com/watch?v=VCJsUYeuqaY, 2018.
[18] Verge Science. What self-driving cars can learn from brainless slime

mold. https://www.youtube.com/watch?v=40f7 93NIgA, 2018.

1131

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii


		2018-10-19T10:54:51-0500
	Preflight Ticket Signature




