
Audio Source Separation Based on
Nonnegative Matrix Factorization
with Graph Harmonic Structure

Tomohiro Ichita∗, Seisuke Kyochi∗, and Keisuke Imoto†
∗ The University of Kitakyushu, Fukuoka, Japan

E-mail: s-kyochi@kitakyu-u.ac.jp
† Ritsumeikan University, Shiga, Japan

E-mail: k-imoto@fc.ritsumei.ac.jp

Abstract—This paper proposes a novel single-channel audio
source separation based on graph-regularized nonnegative matrix
factorization (NMF) taking harmonic frequency structure of
each instrument into account. Since the original NMF, which
is regarded as unsupervised learning, cannot readily identify the
corresponding basis matrix for each target source, supervised
NMFs (SNMFs) using given basis matrices learned from training
sources have been extensively studied. Although SNMFs usually
separate a mixed source better than NMF, the performance
is degraded when training sources different from the observed
source. The proposed SNMF does not use learned basis matrices
but uses learned graph Laplacian matrices characterizing a har-
monic frequency structure of training sources for regularization.
Even if training sources are different from target sources, the
graph structures from observed and training sources are more
correlated, thus, as experimental results show, it can separate
more robustly.

I. INTRODUCTION

Audio source separation is essential for automatic music
transcription, speech recognition, and so on [1], [2]. Nonnega-
tive matrix factorization (NMF) plays an important role, which
factorizes an observed spectrogram into two nonnegative ma-
trices as

Y ≈ D⋆X⋆, (1)

where Y ∈ RΩ×T denotes the spectrogram of an input signal,
D⋆ ∈ RT×L is usually called as the basis matrix, and X⋆ ∈
RL×T is as the activation one (for mathematical expressions,
see Notations in the end of this section). Each basis vector
in the basis matrix typically characterizes a spectral pattern
of each source, and we can extract a particular source from
a product of a set of vectors in the basis matrix and a set of
rows in the activation matrix.

Since the original NMF is an unsupervised NMF (UNMF),
i.e., it does not use any prior information on each source in a
mixed input source, it suffers from the problem. Specifically,
it is difficult to identify a set of basis vectors corresponding to
its source. This degrades the accuracy of BSS significantly. To
overcome the UNMF’s problem, supervised NMFs (SNMFs)
have been extensively studied [3], [4]. In SNMFs, a set of basis
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vectors corresponding to a target source is given by learned
vectors obtained from training sources. By introducing the
pre-learned matrix, SNMFs can efficiently separate the mixed
source better than NMF.

However, SNMFs suffer from a problem. Even though the
harmonic frequency structures among the same type of musical
instruments (e.g., piano, violin) are close, every individual
instrument does not necessarily have the exact same structure.
Thus, if a training source of a instrument are different from a
test source, the learned vectors are not matched to the input
source. Consequently, the source separation accuracy would
be degraded.

To overcome this problem, this paper focuses on a graph
structure of the harmonic frequency structure of each type
of the instrument. The harmonic frequency structure of each
note exhibits an impulsive spectral pattern. Its structure, i.e.,
positions and heights of peaks (see the top-left and the top-
right figures in Fig. 1), tends to be close among individuals in
the same kind of a musical instrument. Thus, if this tendency
can be naturally integrated into the cost function of SNMFs,
it is expected that more robust separation can be realized.

Our contributions in this paper are summarized as follows.
1) The harmonic frequency structures are characterized by

using the graph Laplacian matrix. It represents how
strongly two nodes (i.e., two frequencies) are connected.

2) A multiplicative update algorithm of the PSNMF [4]
with graph regularization is presented.

The rest of this paper is organized as follows. Section II
reviews the conventional UNMF and SNMFs and fundamen-
tals of graph signal processing. Then, the proposed graph-
regularized PSNMF (GPSNMF) with graph harmonic structure
in Section III. The proposed method is evaluated in the exper-
iments of compressed image sensing in Section IV. Finally,
this paper is concluded in Section V.

Notations: Bold-faced lower-case and upper-case letters
denote vectors and matrices, respectively. Sets R and R+

respectively denote real and non-negative real numbers, re-
spectively. Real-valued and non-negative real-valued matrices
of size Nr [row] and Nc [column] are described as RNr×Nc

and RNr×Nc
+ . Ai,j or [A]i,j denotes the i-th row j-th column
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Fig. 1. Harmonic structures: clarinet (top-left), violin (top-right), graph
harmonic structures: clarinet (bottom-left), violin (bottom-right)

element of a matrix A ∈ RNr×Nc . ∥ · ∥F is the Frobenius
norm. 1 is reserved for the all-ones vector.

II. PRELIMINARIES

A. Nonnegative Matrix Factorization

The factorization problem of (1) is mathematically formu-
lated as:

(D⋆,X⋆) = argmin
D,X

JNMF(D,X),

JNMF(D,X) := D(Y∥DX), (2)

where D is a distance function which is typically set to
Euclid distance, general Kullback-Leibler (KL) divergence, or
Itakura-Saito divergence [4]. For example, for given x and y be
the random variables, KL divergence can be given as follows:

DKL(y∥x) = y(log y − log x) + x− y. (3)

According to (3), the cost function (2) is represented as the
following equation:

JNMF(D,X)

= DKL (Y∥DX)

=

Ω−1∑
ω=0

T−1∑
t=0

(
Yω,t log

Yω,t

[DX]ω,t
− (Yω,t − [DX]ω,t)

)
. (4)

Hereafter, we only consider the KL divergence as a distance
function.

B. SNMF for BSS

The problem of the original unsupervised NMF (UNMF)
is that it is difficult to identify vectors in the basis matrix
for the corresponding target source because the UNMF does
not use any prior information. To tackle this problem, for a
given K-source mixed input signal, the SNMF [3], [4] tries
to find a basis matrix D = [D0, D1] that includes a K0 pre-
learned sub-basis matrices D0 :=

[
D(1) · · · D(K0)

]
for

Fig. 2. Undirected graph signal

K0-sources fixed and finds the minimizer D⋆
1 := D(K0+1)

and X⋆ :=
[
X⋆⊤

0 X⋆⊤
1

]⊤
of the following equation.

(D⋆
1,X

⋆) = argmin
D1,X

JSNMF(D1,X),

JSNMF(D1,X) = DKL (Y ∥D0X0 +D1X1 ) . (5)

To robustify SNMF, the penalized SNMF (PSNMF) [4] in-
troduces penalty terms for orthogonal condition into its cost
function to make D0 and D1 uncorrelated.The cost function
is given as:

JPSNMF(D1,X) = JSNMF(D1,X) + µ∥D⊤
0 D1∥2F . (6)

For simple discussion, we set K0 = 1 (i.e., D0 := D(1) and
D1 := D(2)), then the above cost function is reduced to:

JPSNMF(D
(2),X) = JSNMF(D

(2),X) + µ∥D(1)⊤D(2)∥2F .
(7)

Applying Jensen’s inequality, introducing the auxiliary vari-
ables, and taking derivative to the auxiliary function, the
multiplicative rule for the above function can be given as:

X
(1)
i,t ← X

(1)
i,t

∑
ω Yω,tD

(1)
ω,i

(∑2
k=1[D

(k)X(k)]ω,t

)−1

∑
ω D

(1)
ω,i

,

D
(2)
ω,j ← D

(2)
ω,j

∑
t Yω,tX

(2)
j,t

(∑2
k=1[D

(k)X(k)]ω,t

)−1

∑
t X

(2)
j,t + 2µ

∑
i′ D

(1)
ω,I′

∑
ω′ D

(1)
ω′,i′D

(2)
ω′,j

,

X
(2)
j,t ←X

(2)
j,t

∑
ω Yω,tD

(2)
ω,j

(∑2
k=1[D

(k)X(k)]ω,t

)−1

∑
ω D

(2)
ω,j

. (8)

Note that the update rule (8) can be reduced to the one for the
UNMF by setting µ = 0.

C. Graph-based Reguralization
This section reviews the fundamental elements of graph

signal processing (GSP) [5]. Graph signals have intensity
at each node, and the geometrical information of graphs
(connection among nodes) determined by an adjacent matrix
W ∈ RN×N . Fig. 2 shows an example of undirected graph
signals. Its adjacent matrix can be given as:

W =


0 0 1 0.5 0
0 0 0 0.5 0.3
1 0 0 0 0
0.3 0.5 0 0 0
0 0.3 0 0 0

 . (9)
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(a) UNMF

(b) SNMF

Fig. 3. Reconstructed signals from the UNMF and the SNMF (blue line:
original signal, orange line: reconstructed signal from the UNMF or the
SNMF)

Graph Laplacian matrices are often used in
GSP, which is defined by using incident matrix
∆ = diag(

∑
j W1,j , . . . ,

∑
j WN,j) and adjacent matrix

as L = ∆−W. The graph Laplacian matrix is incorporated
into many signal recovery problem. For example, consider
the problem to recover a signal d ∈ RN smoothly distributing
over a graph with an adjacent matrix W. In this case, two
values in the optimal signal should have a small difference
where two nodes are connected with a large weight. Thus,
the following term is usually integrated into the cost function:

N−1∑
i,j=0

wi,j(di − dj)
2 = d⊤Ld. (10)

III. GRAPH-REGULARIZED NMF WITH HARMONIC
STRUCTURAL INFORMATION

Although the conventional SNMFs can improve the UNMFs
by using pre-trained vectors in the basis matrix, it might
degrade its performance when training signals have a different
sound structure from the corresponding source mixed in the
input audio signal. Specifically,

1) the accuracy of a target source extraction decrease due
to the mismatch of pre-trained vectors,

2) the overall reconstruction quality (i.e., D(Y∥DX) in
(2)) also decreases due to fixing some free parameters
for the basis matrix in optimization.

We demonstrate the second problem. Fig. 3 indicates an
original mixed signal (blue line) and the estimated overall
one (orange line) after NMF. Obviously, the approximation
of the SNMF is worse than the UNMF. On the other hand,
although the UNMF approximates the input source, the UNMF
cannot identify the basis vectors for the corresponding source.
In order to overcome the problems of the UNMF and the
SNMF simultaneously, we integrate graph harmonic structure
into NMF framework.

A. Graph Characterization of Harmonic Structure

As shown in the top figures of Fig. 1, a power spectrum
of each musical instrument has sparse peaks. Depending on
a instrument, heights of peaks form a different shape. From
the viewpoint of GSP, we regard a power spectrum signal as
ring undirected graph signal, and term it as graph harmonic
structure.

In this paper, we take a conventional learning approach [6]
for graph Laplacian matrices of each note as :

L⋆ = argmin
L

αTr(D⊤LD) + µ∥L∥2F

s.t Li,j = Lj,i ≤ 0, L · 1 = 0, Tr(L) = N, (11)

where the first and the second constraints imposes L being
graph Laplacian matrix and the third one is to avoid L being
zero matrix. D consists of power spectra obtained by STFT
of a given single note sound.

An example of the graph harmonic structure is shown in
the bottom figures of Fig. 1, where blue lines show the
connectivity between frequencies. We can observe that tall
peaks have few connections compared with low peaks. The
graph harmonic structure can be useful as prior information
on each instrument.

B. Graph-regularized PSNMF

Conventionally, graph-regularized NMF approaches have
been proposed [7], [8]. Inspired by the conventional ap-
proaches, we integrate learned graph Laplacian matrices of
notes from a musical instrument into the cost function as
follows:

JGPSNMF(D,X) = JNMF(D,X) +
∑

i,j,(i ̸=j)

µi,j∥D(i)⊤D(j)∥2F

+
K∑

k=1

αkTr
(
D(k)⊤L(k)D(k)

)
(12)

This problem is termed as graph-regularized PSNMF (GP-
SNMF). By using graph regularization, the cost function can
naturally take the prior information on the basis matrix for
each source into account without fixing some parameters
of the basis matrices for optimization. Thus, we can find
appropriate matrices Dk for the corresponding source, even
though the training sources are different from an input source.
Furthermore, because all the parameters of the basis matrix
can be fully optimized (unlike the conventional SNMFs), the
reconstruction error can be decreased.

C. Multiplicative Update Rule

In this section, we show the update rule for GPSNMF. For
simple discussion, we restrict the number of sources mixed in
an input signal K = 2, and customize the cost function (12)
into the following eqation:

JGPSNMF(D,X) = JNMF(D,X) + µ∥D(1)⊤D(2)∥2F
+ αTr

(
D(1)⊤L(1)D(1)

)
. (13)
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In similar discussion in the UNMF, the PSNMF [4], and
the graph-regularized NMF methods [7], [8], by applying
Jensen’s inequality, introducing auxiliary variables, and taking
derivative to the auxiliary function, the multiplicative update
rule for (13) can be derived as follows:

D
(1)
ω,i ← D

(1)
ω,i

∑
t Yω,tX

(1)
i,t P

−1
ω,t + α[WD(1)]ω,i∑

t X
(1)
i,t + 2µQ

(2,1)
ω,i + α[∆D(1)]ω,i

,

X
(1)
i,t ← X

(1)
i,t

∑
ω Yω,tD

(1)
ω,i

(∑2
k=1[D

(k)X(k)]ω,t

)−1

∑
ω D

(1)
ω,i

,

D
(2)
ω,j ← D

(2)
ω,j

∑
t Yω,tX

(2)
i,t P

−1
ω,t∑

t X
(2)
j,t + 2µQ

(1,2)
ω,i

,

X
(2)
j,t ←X

(2)
j,t

∑
ω Yω,tD

(2)
ω,j

(∑2
k=1[D

(k)X(k)]ω,t

)−1

∑
ω D

(2)
ω,j

,

Pω,t =
∑
i′

D
(1)
ω,i′X

(1)
i′,t +

∑
j′

D
(2)
ω,j′X

(2)
j′,t,

Q
(ℓ1,ℓ2)
ω,i =

∑
j′

D
(ℓ1)
ω,j′

∑
ω′

D
(ℓ1)
ω′,j′D

(ℓ2)
ω′,i . (14)

IV. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed method,
compared with the UNMF, the SNMF, and the PSNMF. The
test mixed musical sources are artificially synthesized from
two of oboe, clarinet, piano, and trombone. The data set of
[9] was used in this experiment. First, we apply the proposed
or the conventional NMFs to the input mixed sources, then
reconstruct only the target sources from the corresponding
basis and activation matrices. The training signal consisted
of 24 notes over two octaves as in Fig. 4(a). The other
experimental conditions are summarized in Table I.

We conducted two experiments. In the first experiment, both
training and test data are generated by the same synthesizer
(YAMAHA MU-1000 PCM-based MIDI synthesizer). In the
second experiment, different synthesizers are used. Training
data is generated by the YAMAHA MU-1000 PCM-based
MIDI synthesizer and test data is generated by the Microsoft
GS Wavetable Synth.

We evaluate the separation performance by the signal-to-
distortion ratio (SDR) (see [10] for detail information):

SDR = 10 log

( ∑
t(starget(t))

2∑
t(einterf (t) + enoise(t))2

)
. (15)

Numerical results are shown in Table II. In both experiments,
the proposed GPSNMF can achieve higher SDR in most
cases. In particular, in the second experiment, the GPSNMF
significantly improve the BSS performance because the pro-
posed method can robustly find the basis matrix by graph
harmonic structure, even though the training and the test data
are synthesized from different software.

V. CONCLUDING REMARKS

In this paper, we proposed the GPSNMF for audio source
separation. Unlike the conventional SNMF, the GPSNMF

(a) Training data

(b) Test data

Fig. 4. Test and training notes

TABLE I
EXPERIMENTAL SETUP

Target signal (MIDI) Oboe, Clarinet, Piano, Trombone
Observed signal (MIDI) Mixture of 2 target signals

Sampling frequency 44.1 kHz
Frame length of STFT 4096 points
Shift length of STFT 2048 points

Target signal basis number 100
Interference signal basis number 50

Number of iterations NMF (conv./prop.) 500

TABLE II
EXPERIMENTAL RESULTS (DB)

Experiment 1
Target Interference UNMF SNMF PSNMF GPRNMF
Oboe Piano 4.93 7.00 8.67 8.97

Trombone 4.76 6.72 7.73 7.74
Oboe 3.14 3.13 4.32 5.45

Clarinet Piano 5.03 5.49 9.23 14.31
Trombone 4.89 5.36 9.10 13.48

Experiment 2
Target Interference UNMF SNMF PSNMF GPRNMF
Oboe Piano 1.95 2.18 3.68 3.40

Trombone 3.39 5.64 6.56 6.80
Oboe 2.70 2.78 3.44 5.67

Clarinet Piano 3.21 3.92 5.69 6.69
Trombone 4.14 7.93 8.92 9.69

uses graph harmonic structures as prior information for each
instrument, instead of learned basis matrices. Even if the sound
quality of a training source is different from the test source,
the GPSNMF could extract the target source more robustly
than the conventional UNMF and SNMFs.
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