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Abstract—Information sanitization to protect an underlying
label from being inferred through a data stream is investigated
in this work. The problem is posed as an optimal mapping from
an underlying distribution that reveals a class/label for the data
to a target distribution with minimum distortion. The optimal
sanitization operation are transformed to convex optimization
problems corresponding to the domain of the source and target
distributions. In particular, when one of the distributions is
discrete, a parallel is drawn to a biased quantization method
and an efficient sub-gradient method is proposed to derive the
optimal transformation. The method is extended to a real time
scenario when multiple source distributions are to be mapped to
a fixed target distribution without prior knowledge of the label
of the streaming data, in order to defeat any hypothesis test
between the labels. It is shown that even when the source label
is unknown to the sanitizer, optimal distortion is possible with
perfect privacy.

[. INTRODUCTION

Data collection systems are ubiquitous, and machine learn-
ing algorithms that derive useful classifiers for these large and
diverse swathes of information have grown fast and sharp.
These systems gather data often for legitimate purposes, and
the learning algorithms developed usually arise out of com-
mercial needs of the individual. For instance social networks
provide individuals a virtual stage to reveal themselves to their
own community and commercial information is targeted at
these individuals through learned preferences. With the pow-
erful computing infrastructures and enormous data collected
[1], supervised learning increasingly affects human decisions
in various domains, including spam classifiers of e-mail, face
recognizers over images, and medical diagnosis systems for
patients [2].

However, data, even if gathered legitimately, can lead to
undesirable inferences compromising private sensitive infor-
mation of an individual or an entity. For instance, web ac-
cess patterns can reveal anything from political preferences
to social biases [3], packet transmission timing can reveal
websites accessed, driving patterns extracted from GPS data
can reveal demographic information. Furthermore, with de-
creasing difficulty of deploying powerful machine learning
tools, an adversary with intent can with ease derive sensitive
information from individuals and organizations [4]. Supervised
learning can also affect decisions in domains protected by anti-
discrimination law [5], and its effect of existing biases is not
well understood. The primary focus of this work is to develop
a data sanitization mechanism that prevents the inference of
sensitive information whilst minimally distorting the data and
thus could be used for other legitimate processing or learning
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purposes. In other words, we develop methods for minimum
distortion inference suppression.

Supervised learning [6] systems make predictions by col-
lecting a large number of (X, ) pairs, where X is a feature
information of user and @ is a label with practical sense. After
sufficient observations, the system understands the connection
between X and 6, and is capable of making prediction 6*
base on new arrival samples with only feature X. In this
work, we investigate the problem from the reverse perspective
—given enough statistical knowledge, what is the best method
to remove the label information from X? Or, given a sample
from one class, how can we minimally change X such that
the sample looks like a sample from another class?

We call such techniques information sanitization where
a sanitizer receives user-generated data and outputs label-
resistant sanitized data. Not surprisingly, one can always
produce independently generated samples from some target
distribution and retains complete privacy, or refuse any output
to the system and do not release any information. Such a naive
data sanitization mechanism however limits any legitimate
utility that can be derived from the data. When the utility is
measurable as a function of the sanitization induced distortion
from the source data, users can carefully craft sanitization
schemes to minimize cost whilst rendering the data label-
resistant. Since the pre-sanitize data is not revealed to the
system, the cost can be reduced by utilizing the dependency
— as long as the output data has desired distribution, complete
privacy is still retained.

Mathematically, this work investigates the mapping scheme
to transform a set of distributions to a single target distribution
and thus lose the label that defines the source distribution. The
goal is to find the optimal joint distribution —or, equivalently,
conditional distribution — such that the distortion between
pre and post sanitized data is minimized. Throughout this
paper, we assume statistical knowledge about the underlying
data sources in the form of probability distribution functions.
Under such an approach, perfect privacy is guaranteed against
any inference mechanism, and thus provides a performance
benchmark for any sanitization scheme.

Related Works

There are several techniques to protect privacy against
potential sensitive information leakage in a supervised learn-
ing system. One classical example would be random noise-
addition methods as a patch to existing algorithms [7], [8], [9].
Regularization techniques, which aim to avoid overfitting to
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the examples used for training, may also hide details of those
examples [10]. Another approach is designing a decentralized
learning system which limits the power of any individual
adversary [11], [12].

A similar problem to this work is the distribution matching
or signal shaping problem, where we want to transform
independently generated input bits into a sequence of output
with a desired distribution [13][14]. Distribution matchers are
used for rate adaption, or to achieve the capacity of the additive
white Gaussian noise channel [15]. Although seems similar,
the work we present here is a different problem. The distri-
bution matching problem aims at generating a approximate
target distribution with a limited code length, while the goal
of data sanitization problem is to generate an identical target
distribution with a limited distortion cost.

Privacy in streaming data, and in particular, within the
context of machine learning algorithms has been studied using
different measures and methodologies. Information theoretic
approaches such as in [16], [17] use conditional entropy to
measure privacy of an underlying source whilst transforming
the measurements to guarantee privacy with minimum distor-
tion. Differential privacy is a common approach in the context
of supervised learning [8], with dominant applications in static
databases, and limited applications to time series data which is
the focus of this work. We note that, when considering perfect
privacy, as in this work, the solutions would guarantee perfect
privacy under an entropic framework (conditional entropy
equal to unconditional entropy), and a differential privacy
framework (epsilon equal to zero). In the context of inference
based privacy, stealthy attacks on dynamical systems [18],
[19], [20] are close to this work. In those works, an adversary
maintains stealth by preventing inference about his presence
whilst achieving a target objective (akin to distortion).

In the present work, we primarily look into the optimal
sanitization problem under several sets of assumptions. In
Section II, we discuss the general problem formulation. In
Section III, we investigate the optimal single source saniti-
zation problem, including continuous-to-continuous in R, and
continuous-to-discrete in R™. Although there are still other
cases to be studied, we do believe that these assumptions are
the most common random variable types one may encounter in
practical. In Section IV, we demonstrate an sanitization method
in real time systems which obtains perfect privacy and optimal
performance asymptomatically.

II. PROBLEM FORMULATION

Consider a sanitizer receiving data from m data sources
{X1, -+, X,,}. Each data source has a known probability
distribution Py. The goal of the sanitizer, is to reshape these
distributions to the same distribution, that an adversary cannot
infer which sources the data comes from. In the meanwhile,
the sanitizer suffers a distortion measured by Ef(Xy, Yy).

The problem we investigate is, given a set of distributions
{Py}]" . how to derive conditional distributions P(Y}|X})
such that the resulting distributions Py, are identically dis-
tributed and the distortions Ef (X, Yy) are minimized.
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When the source label £ of an arriving stream of data is
known to the sanitizer, the problem reduces to k independent
optimization problems given that the target distribution Py
is known. In other words, the key challenge that remains
is deriving a conditional distribution that maps a source to
target with minimum distortion. The derivation of the optimal
mapping is one of the foci of this work, and in particular,
in Section III, where the mapping mechanism depends on
whether the source or target distributions are discrete or
continuous valued. The optimal mapping, thus derived, can
be applied to sanitize the data stream in real time assuming
prior knowledge of the label (distribution) of the data.

When the source label is unknown, but the underlying set
of distributions from where the data stream is derived is
known to the sanitizer, the problem cannot be reduced to
independent optimization problems apriori, and a real time
dynamic strategy is required to sanitize the data with minimum
distortion. This problem will be defined formally in Section
IV where we show that even without prior knowledge of the
distribution, perfect inference privacy is achievable in real time
with minimum distortion identical to a sanitizer with perfect
knowledge of the stream label.

Source Sanitizer

X1~ P '—V

Output Distortion

—»‘ Y1~ Py | Ef(X1, Y1)
sr
X3~ P '—V —>| Ys ~ Py | Ef(X3,Y3)

Fig. 1. The Sanitization Model

Py, x,
Py, x,

Py, x,

III. OPTIMAL SINGLE SOURCE-TO-TARGET MAPPING

In this section, we consider the case when there is only
one source distribution and the target distribution is known
and fixed. Consider a user generating message X € X" from a
source distribution P;, which reveals the label of user. The
user wants to output a message to a system, while hiding
its label information, so that the adversary cannot learn the
label from the message. Motivated by this, the user outputs a
sanitized message Y € Y with a target distribution P,, which
is considered to be label-resistant. In the meanwhile, the user
suffers a distortion cost. The goal of this work is to find the
minimal distortion sanitization scheme for the user, which is
a random mapping X — Y. Such a sanitizer can be modeled
as a memoryless channel.

Message X
B ———
Distribution P

Sanitized Message Y’
Sanitizer »
Distribution P

Fig. 2. Single Source-to-Target Sanitization

We formally state the problem as follows.
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Problem 1. Let X be an X-valued random variable and Y
be a Y-valued random variable, f : X x J) — R™T be a cost
function, we want to find the best joint distribution Pxy such
that

minimize Ef(X,Y)
Pxy

st. Px =P
Py =P,

where Px and Py be the marginal distributions of Pxy
corresponding to X and Y respectively. We do note that
this is equivalent to find a random mapping since one can
compute conditional distribution with joint distribution. For
example, for discrete random variables, P(y|X = z) =
Pxy(z,y)/Pi(x).

If X and Y were discrete random variables, the optimization
problem as stated above would reduce to a straightforward
linear programming problem which are easily solved using
solution techniques such as criss-cross [21] or affine scaling
[22]. When one or both of the variables are continuous valued,
it is computationally infeasible to run a traditional optimization
problem. In the subsequent subsections, we utilize the dual
version of the above optimization and under certain conditions
on the distortion metric f(X,Y) we propose specialized
algorithms catering to the specific subclasses of the problem.

The following theorem provides the dual of the proposed
optimization problem, and reduces the feasible set of solutions
using complementary slackness.

Theorem 1. Let v : X — Rand v : Y — R be two
measurable functions. We define the dual problem be

d= dP: dP:
rﬁﬁ,x (/Xu 1 +/yU 2)
st ou(z) +oly) < flz,y)

The strong duality holds, i.e. p = d where p is the optimal
value of problem 1.

(Complementary slackness) Furthermore, let Pk be the
solution of primal problem and u*,v* be the solution of dual
problem. Then P%y (A) =0, where

A={(z,y) € X x Y :u'(x) +v"(y) < f(z,y)}
Proof. See appendix A. O

V(z,y) e XxYy (1)

In the following subsections, we provide solutions and algo-
rithms for sanitizing continuous random variables to a target
distribution when the distortion constraint is expressionless as
a semi-norm.

A. Optimal Sanitizers for Continuous Random Variables

a) Continuous Target Distribution: When both the
source and target distributions are continuous, the optimization
problem in either primal or dual problem is generally hard
to solve. Under certain conditions on the distortion function,
however, we show that the optimal transformation is a simple
CDF mapping typically used for random variable generation.
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In particular, let X and Y be real-valued random variables
and let the distortion function f(z,y) = h(z — y), where the
function h : R — R satisfies the following conditions:

e h(z) =0 if and only if x = 0.

o h(z) is symmetric, and strictly increasing on [0, o)

o Quadrilateral inequality: For any 1 < x5 and y1 < ¥y,

h(z1 —y1) + h(ze — y2) < h(z1 —y2) + k(22 — Y1)

A simple example that satisfies this is h(x) = |z|* with
a > 1. In particular, @ = 2 leads to a minimal mean
square error (MMSE) sanitization.
The optimal solution of the problem is always a deterministic
mapping that maps any xg to a yo with the same “percentile”.
We formally states the result in the following Theorem, and
illustrate the meaning of percentile mapping in Figure 3.

Theorem 2. The optimal solution of this problem is the
CDF mapping. That is, the optimal Py |x is the deterministic
mapping X — g(X) where g(x) = Fy. ' (Fx(z)) and Fy'' is
the generalized inverse distribution function:

Fyl(y) =inf{z € R: Fy(z) >y}

— Fy
—
1
F 'y (20) Fy (o)
Py >
0 o] Yo

Fig. 3. The CDF mapping

Proof. Our first observation is that, for any o € R such that
p1(zg) > 0, there always exists a yg such that (z¢, yo) is on the
boundary of the constraint, i.e., u*(zo)+v*(yo) = h(zo—0).
Such condition will “block™ any mapping possibility between
x1 and y; if (21 — 20)(y1 — yo) < 0, i.e., we cannot have
crossing mappings, as is shown in Figure 4. Base on this result,
we can prove that the “percentile” of xg in distribution P; is
the same as the “percentile” of yg in distribution P». A detailed
proof is available in Appendix B. O

In the following, we provide the optimal MMSE sanitizers
and their performance for a few example distributions. Note
that the transformation as described in Theorem 2 is indepen-
dent of the actual distortion metric, as long as the metric is
expressible as a convex function of norm. Furthermore, if the
CDF of the source and target distribution are expressible in
functional form, it is easy to obtain closed form sanitizers for
the data.
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o
N
S

\ Y1 Yo y=

p2(y) v
Fig. 4. u*(z0) + v*(yo) = h(zo — yo) blocks any crossing mappings.

Example (Gaussian). Let X ~ N(u1,0?) and ¥ ~
N (uz2,0%). The MMSE sanitizer is given by deterministic
mapping ¥ = (X — ul)g—f + peo, with the minimal square
error E(X —Y)? = (us — p1)? + (02 — 01)% In compar-
ison, a naive independently generated Y will induce error
E(X - Ynaive)2 = (MQ - //51)2 + 0'% + 0'%

Example (Step to Exponential). Let X be distributed ac-
cording to a piecewise constant function with p(z) =
—5,(n—1 < <n).Let Y be exponential distribution with
PDF ps(y) = Ae ™Y, (y > 0). The MMSE sanitizer is given
by deterministic mapping Y = —A"!log(1 — U) , where

&
_ 6 1 x — [z]
U=a |\l ap

b) Discrete Sanitizers for Continuous Sources: The con-
tinuous to discrete sanitization is a quantization process. If
there were freedom to choose the best target distribution,
then the optimal sanitization is a classical quantization or rate
distortion problem which is well studied in literature (Lloyd’s
Algorithm)[23], which will generate a Voronoi tessellation
as a partition of space R™. When a target distribution is
specified, we will show that the result is similar to a “biased”
quantization problem, with a sub-gradient method to find the
optimal bias vector. The problem states as follows:

Problem 2. Let X be an R™-valued continuous random
variable with distribution measure P;, and Y be a Y-valued
discrete random variable with distribution measure P,. We
assume that

e P is absolutely continuous w.r.t. Lebesgue measure, with
q(z) be the PDF.
o P, is distributed in finite points J = {yk}gzl, with
Pa(yk) = pr-
Let f:R" x Y — R be a cost function, we want to find the
best joint distribution P(x,y) such that minimize Ef(X,Y).

This problem can be solved by vectorizing the dual problem
given by Theorem 1. Since P, is distributed on a finite set,
the function v : ) — R can be treated as a d-dimensional
vector v. = {vy, - ,vq} where vy = wv(yg). Then, we

12-15 November 2018, Hawaii

apply a diminishing step size subgradient method to solve the
problem numerically. A detailed algorithm exploiting this idea
is provided in Algorithm 1, and the following theorem proves
that the algorithm converges to the optimal solution of the dual
problem.

Theorem 3. Algorithm I converges to the optimal solution to
Problem 2. i.e. g(Vpest) — minp,, Ef(X,Y) as N — oc.
Here Vst is the best vector v within the first N iterations,
and Vpesy — v* = (v, - ,v}) as N — oo. Furthermore,
the optimal mapping is always a deterministic mapping that
maps x to yi, where
k = arg min [f(x, yr) — vj]
1<5<d

If there is more than one such indices, one can choose any
one from them.

Algorithm 1 Sub-gradient method for C—D sanitization
Define:

o) =v7o+ [ min [7(o00) vl afe)ds
v = (01, ,va)"
pP= (pla e 7pd)T

Initialize: v = 0, gpest = g(0), Vpest = v(0), pick maximum
step N, pick step size {a}72 s.t., (One example is oy =

1/k)

(o)
lim o =0, E oy = +00
k—00 =1

for k=1 to N do
Partition R™ by

So={sess o) == min (fle) — )}

S1 =5
Sp=S\UZl S, VE=2,---.d

Compute the supergradient w = (wy, -+ ,wgq), Where

W :Pk—/ dpP, :pk—/ q(x)dx
S)q Sl«

V4 V— W
if g(v) > gpest then
Vbest <V, Obest < g(V)
end if
end for

Output: Viest,  Goest

Proof. We show that when the target distribution is discrete,
then the dual problem can be stated as:

d = max g(v)
veRd

It is easy to see that g(v) is concave with respect to v.
Indeed, minj<k<q [f (2, yx) — vg] is concave w.r.t. v since it
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is the minimal over finite linear functions. The algorithm we
proposed here is a diminishing step size subgradient algorithm,
the proof of convergence can be found in Shor’s book [24].
The optimal mapping rule is a direct corollary of Theorem 1.
The detailed proof is in Appendix C. O

We are especially interested in the partition method intro-
duced in Algorithm 1, since one may use the partition scheme
to find the optimal deterministic mapping rule. This partition
can be seen as an generalization of Voronoi tessellation. Here
we use the following example as an illustration.

Example. Let X and Y be random variable in R2, with

e X ~ N(0,I) be normalized Gaussian distribution
o Y is a discrete random variable P(Y = yi) = pi:

Yo = (070)7y1 = (150)7y2 = (07 1)7y3 = (*170)7:94 = (0571)
Po = O.32,p1 = 0.257])2 = 018p3 = 0.1,p4 =0.15

o The cost function is f(x,y) = ||z — y||2 (MMSE).

We run the subgradient algorithm and find the optimal v* =
(1.17,1.16,0.76,0,0.35). Then we partition R? and generate
the following tessellation in Figure 4(a). Figure 4 illustrate “bi-
ased Voronoi tessellation” generated by the partition method.
A regular Voronoi tessellation, as is shown in Figure 4(b), is a
partitioning of a plane into regions based on distance to points
in a specific subset. However, a sanitizer using such a Voronoi
tessellation as mapping scheme will not generate a sanitized
signal Y with desired probability distribution. To address the
statistical requirement, we need to use a generalized Voronoi
tessellation partition with the bias vector v*. As a result, the
space is no longer partitioned by a sequence of line segment
bisectors. Interestingly, unlike classical quantizers, note that
the region S may not contain yg, see S5 in Figure 4(a).

SQ SQ
Y2 51 Y2 51
S() SO
Y3 Yo 1 Ys Yo Y1
S3
S3

Ya Ya

54 54

(a) Biased Voronoi Tessellation (b) Regular Voronoi Tessellation

Fig. 5. Comparison of Biased and Regular Voronoi Tessellations

Remark. Since the sanitizer problem is symmetric, the optimal
discrete-to-continuous sanitizer can be obtained by looking at
the optimal continuous-to-discrete sanitizer reversely. Specifi-
cally, if X is continuous, Y is discrete, and we want to map
Y to X, the optimal sanitizer is given by

q(z)

Pxy (z|Y = yx) = [ a@)dz
Jsy
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where ¢(x) is the PDF of X.

IV. REAL TIME MAPPING

In this section, we consider a real time data processing
system where the sanitizer receives data from one of two
source classes. This formulation is useful when the sanitizer
needs to process streaming data without perfect knowledge
of the source label apriori. Here, the user generates i.i.d.
data {Xt}f;l from a fixed class j € {0,1}. The probability
distribution of each class Py, 6 € {0, 1} is known, however the
correct class label j is unknown to the sanitizer. The sanitizer
needs to generate a mapping rule Pit/l  at every time slot ¢.
We do note that the mapping rule can be generated by the
previous data observations.

Class 0 P

X Sanitizer Y
P Pl |
Class1 P 7o Y|X P
unknown J

Fig. 6. Real Time Sanitization Model

Let N be the time horizon. The goal of the sanitizer is to
map X; — Y; such that Y; has distribution P», and minimize
the average cost

N
1
CN = N E EP)",‘Xf(Xtay;ﬁ)
t=1

while keeps a perfect-privacy, which is defined as follows.

Definition 1 (Berfect—privacy). If a time-series mapping pol-

icy {Py,x,},_, leaks label information j with a prob-
ability of 0, we call the policy {PYA Xt}?’:l be perfect-

private, wherein leaking is defined to be the event A :
{there exists 1 <t < N s.t. Py, j9—; # Pg}.

If there were a sanitizer with the knowledge of j apriori, it
could use the static single-source-to-target method in Section
IIT and find a optimal mapping P;’ljx, which would yield an
average error

c* = EP;,ljxf(X,Y)7 where X ~ P;)Y ~ P,

This can be considered as a optimal sanitizer, yet it require
the knowledge of j. Here we prove that perfect-private and
optimal performance ¢* can be reached asymptotically without
such an known apriori, as is shown in the following theorem.

Theorem 4. If the distribution of the data stream is unknown
save for a set of 2 distributions {Py, P1}, a perfectly private
mapping is still possible as N — oo such that the average
distortion converges to the optimal distortion where the source
label known apriori. i.e. limy_,00 % Ef(X,Y) = ¢*

Proof. We propose a mapping rule generating method that
asymptotically reaches perfect-privacy with an average cost
asymptotically converges to ¢*, which is defined as follows,
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o For the first fixed horizon of size s = [log N], the
sanitizer output independently generated Y;. That is
Pm x = P, for all ¢ < s. Note that in this stage the
sanitizer is not possible to leak information.

o In the meanwhile, run a likelihood ratio test to determine
the estimated label j, specifically

e For s < t < N, the sanitizer output the optimal static
single-source-to-target sanitization scheme by assuming
the data comes from source ;.

Let P, = P(j # j) be the probability of error in the

hypothesis testing stage. The proposed likelihood ratio test
has a exponentially decaying error rate [25], that is

lim —flogP C(P||Pr)

n— 00

where C(-||-) is the Chernoff distance between the two distri-
butions C(Py||Py) = —ming<y<i log [, P(x) Pl ™" (z)dx.
Therefore, for sufficiently large N, P, ~ A/NeCollP1),
Moreover, the average cost

1 N

oN=g ZEPY (XeYi) +Pe ) Eppcs f(Xe, Vi)
t=s+1

+(1 ZE*]thYf)
t=s+1
SCind N —
= 7Pee
N TN [Pece +

where ¢, = Ep.1-; f(X;,Y;) is the single step average cost
Y| X

(1—P.)c"]

if the estimated label j were incorrect, and c;,q is the single
step average cost if we generate Y independently. Now if
we let N — oo, we have s/N — 0 and P, — 0, thus
we have limy_,cy = c*, i.e. the proposed method is
asymptotically optimal. In the meanwhile, the probability of
information leakage equals P,, therefore the proposed method
is asymptotically perfect-private. O

That being said, in asymptotically sense, one can always
obtains a sanitizer near-optimal performance and near-perfect
privacy by attaching a single-source sanitizer to a likelihood
ratio test.

V. CONCLUSION

In this work, we consider the problem where a user from
a specific class wants to hide his/her class label completely
from any potential adversarial supervised learning system. We
investigate the optimal sanitization that takes data from a
source class so that the sanitized data has identical probability
distribution with data from a target class. The optimality
is evaluated by the cost induced by sanitization distortion.
While the discrete-to-discrete transformation is easily solved
by linear programming, for continuous space problems, a
primal-dual methodology and complementary slackness the-
orem is crucial for verifying claims about optimal solutions.
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In particular, the continuous-to-discrete problem can be solved
with sub-gradient method and biased Voronoi tessellation akin
to quantizer design albeit with a target value distribution. The
work primarily focuses on i.i.d. distributions and known target
distributions. The natural expansions to the scope would be
relaxing those assumptions.

APPENDIX A
PROOF OF THEOREM 1

(Strong Duality) Let M be the collection of all o-finite
measures on the set X' x ). We rewrite the primal problem as

= min
P i /m
S.t.
Q2 =

where Q1 and @2 be the “marginal measures” generated by
Q. Specifically, we define ; and Q2 be the measures satisfy
Q1(A) = Q(A x Y) and Qo(B) = Q(X x B) for any
measurable set A C X and B C ). It is noteworthy that
any feasible () is a probability measure. Indeed, Q(X x )) =
Q1(X) = P (X) =1

Let w : X - R and v : Y — R be two measurable
functions. We define the Lagrangian L be a functional L :
RY* x RY x M — RU {oo} defined as

Liu,v, Q) = /X JiQ+ /).(u(dPlfdQl)+ /y o(dPy—dQs)
@

It is easy to see that

Sy FQ if Q s feasible

v 400 otherwise

That is, p = QinjfvlsupL(uw,Q). Note that L(u,v,Q) is
eEM y,v

linear with respect to ﬂ,v and (). By the Sion’s minimax
theorem [26], p = d := sup min L(u, v, Q). Moreover,
u,v QEM

inf L(u,v,Q) = udP; +/ vd P
onf, (u,v,Q) /x 1+ [, vdhs

([ o o)
:/XudP1+/yvdP2

+ ot [ 1) i) = o) dQ
If u(z) +v(y) < flz,y) V(z,y) € X x Y (%),

the @ that minimize L(u,v,Q) will be the zero measure
Q(A) = 0,VA C S x T. Otherwise, it is easy to see that
infgeam L(u,v, Q) is not lower-bounded. Therefore,

Sy udPy + fy vdPy  if u,v satisfy (%)

—00 otherwise

Jof L(u,v,Q) = {

By the definition of dual problem we finished the proof.
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(Complementary Slackness) We first show that

() — ' (2) —v* ()] = 0

inf
(z,y)€XXY

If not, let a = infe, yycxxy [f(z,y) —u*(x) —v*(y)] > 0
and define function v’ : X — R as

v =u"+a

It is easy to see that [, u/dPy = [, u*dPi + a and the
function pair (u’,v*) is feasible, which contradicts with the
optimality of (u*,v*).

By Eq.(2) and minimax Theorem, we have

L * * P* — : f L * *
(u YU XY) ng/vl (’LL U 7Q)
Therefore,

/ [F(@,y) - u*(z) — v ()] Py
X XY

= if [f(z,y) —u(@) - (y)] =0

(2,y)EX XY
Since (u*,v*) is feasible, f(z,y) — u*(z) —v*(y) > 0.
Thus
/A () — u(z) — * (4)] Py
< / (@) — () — v*(1)] dPyy =0
XXY

Combine with the fact that f(x,y) —u*(z) —v*(y) > 0 on
the set A, the proof is complete. O

APPENDIX B
PROOF OF THEOREM 2

Let p1(z) and pa(y) be the PDF of X and Y respectively.
By Theorem 4, the dual problem is given by

d=max ([ utwmtaris + [ omtia)

st u(x) +o(y) <h(z—y) Y(z,y) € R

+o00

Although both the primal problem and the dual problem
seems not easy to solve, the strong duality and complementary
slackness still hold. One thing we can use complementary
slackness for is to verify claims about optimal solutions. Our
first observation is that, for any zy € R such that p;(z¢) > 0,
there always exists a yo such that (xg,yo) is on the boundary
of the constraint, i.e., u*(zg) + v*(yo) = h(zo — yo).

Indeed, since pi(xzg) > 0, the conditional distribu-
tion Pyx(y|X = x0) is well-defined. By Theorem
1, the support of Py x(y|X = o) is a subset of
{yo € R : u*(z9) + v*(yo) = h(xo — yo)}, which yields the
result.

Furthermore, for real-valued continuous random variables,
the fact (zg,yo) is on the boundary of the constraint will
“block” any mapping possibility between x; and y; if (x1 —
20)(y1 — yo) < 0, i.e., we cannot have crossing mappings, as
is shown in Figure 4. Base on this result, we can claim that
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the “percentile” of z( in distribution P, is the same as the
“percentile” of yq in distribution Ps.

Lemma 1. Let (u*,v*) be the optimal solution of the dual
problem and u*(x¢) + v*(yo) = h(zo — yo). Let Fx(-)
and Fy () be the cumulative distribution of X and Y. Then
Fx(x0) = Fy (yo)-

Proof: For any x > x and y < yo, we claim that u*(z)+
v*(y) < h(z — y). Indeed

u(zo) +v(y) < h(wo —y) (3)
u(z) + v(yo) < h(z —yo) 4
u(zo) +v(yo) = h(wo — o) ©)

By (3)+(4)-(5) we have

u(z) +v(y) < h(zo —y) + h(z — yo) — h(zo — yo)
< h(z—y)

Similarly, for any z < zp and y > yp, we have the same
result. By the Theorem 1, we have

P)*(Y(X<ZZ‘07Y>’LZ/0) :07 P;(Y(X>IO7Y<y()):O
Which yields

Fx(wo)zpl(X<I0)
= P)*(Y(X < zo,Y < yo) + P)*(Y(X <z, Y > yo)
= Piy (X <20, Y <o)

Similarly we have
Fy (yo) = PXy (X <z0,Y <o) = Fx(20)

|

Lemma 1 reveals the connection between the boundary

condition on (z,¥yo) and their percentile in distributions Py

and P,. Now, for any zy € R with P;(zg) > 0, consider the
set

T (o) = {yo € R: u"(z0) + v"(y0) = hwo — yo)}

By Lemma 1, 7T (xz9) C {yo € R: Fy(yo) = Fx(zo0)}.
Since X and Y are real-valued continuous random variables,
the CDF functions Fx(-) and Fy(-) are continuous and
non-decreasing. Thus, the set {yo € R: Fy (yo) = Fx (o)}
is either a single point {g(z()} or an interval starting at
g(zo). By the Complementary slackness Theorem, the optimal
sanitizer should map z( to a subset of 7 (xg). Moreover, if
{yo € R : Fy(yo) = Fx(z0)} is an interval, the probability
Py{yo € R: Fy(yo) = Fx(z9)} = 0. Therefore, we can
always map xo to g(zo) without consider the rest of the
interval. O

APPENDIX C
PROOF OF THEOREM 3

Firstly, we show that the given problem is equivalent to the
dual problem given by Theorem 1. Let Cp be the collection
of all function pair v : R® — R and v : Y — R
such that satisfy the constrain of dual problem. That is,
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Cp = {(u,v) :u(@)+o(y) < flz,y) V(z,y) eR" x Y}
Then, for any (u,v) € Cp, consider the following function
pair (u*,v*),

w(@) = min [f(z,p) - vlg)

v*(y) = v(y

We claim that u*(z) > u(z). Indeed,

w*(z) —u(z) > 0= min [f(z,y:)* —v(y)] — ulz)

1<k<d

- 11%1132(1 [f(zvyk)Q —u(z) —v(y)] >0

Moreover, it is easy to see (u*,v*) € Cp by the definition.
Now, for any (u,v) € Cp, we pick

v = (1)17 o ’vd)T = (U(yl)v e 7U(y<1))T
We have
g(v) — {/ udPy +/ vdPg}
" y
d d
= kapk +/ u*(gj)dpl — kapk +/ u(I)dPl
k=1 R k=1 "

:/n [u* () — u(2)]dPy = 0

Therefore, maxg(u) >  max [ LudPy + [, vdP: ]
vERdg( ) ~ (uw,w)ECp I]R ! fy 2
prove

can that

IA

Conversely, we max g( )

vERY
max | [, udPy + vdP] by picking u(z) =
max, [ fa wdPy+ [y vdP| by picking ()

ming<g<q [f (%, yr) — vi] and v(yr) = vy for any v € R%
Combine these inequalities we conclude that the given
problems are equivalent.

Then we show that the vector w = (wy,--- ,wy) € R%is a
super-gradient of g(-) at v, Thatis, g(v/)—g(v) < wT(v/—v)
for all v € R?. Let {Sk}Z=1 be the partition with respect to
v and {512}2:1 be the partition with respect to u’. Then

d
ka {pk—/ dP1] +Z [z, ye)dPy
=1 S
d d
=i |p= [ an|+ 3 [ swaan
k=1 ‘512 k=1 :’l/v

ol f ]
|

+Z/Sl[f(xyk)_vk]dpl Z/ (2, yk) — vi] dPy

k=1

=1

g(v') -
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Note that ZZ:I(U;@ — ’Uk) |:pk — fSk‘ dP1:| = wT(v/ _ V).
Therefore,

9(v') —g(v) = w'(v' =)
= [ min (7o) = v7) dPs - Z / (2, 94) — )Py

d

=3 [ i () =)~ (e o] api <0

=1,
k=1 '

Now, we move to the convergence of the sub-gradient
method. It is easy to see that g(v) is concave with respect to
v. Indeed, mini<p<q [f(2,yx) — vi) is concave w.r.t. v since
it is the minimal over finite linear functions. The algorithm we
proposed here is a diminishing step size subgradient algorithm,
which is well studied, and guaranteed to converge to the
optimal value. The proof of convergence of diminishing step
size subgradient algorithm can be found in Shor’s book [24].

Finally we prove the optimality of proposed mapping. By
u*(z) = miny<p<a [f(z,yx) — v}], the value of u*(x) + v}
will reach the dual constraint boundary f(x,y) if and only if
x is in the region w.r.t. vy, otherwise we have u*(z) + v} <
f(x,yx) and therefore P%y (x,y;) =0 by Theorem 1. O
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