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Abstract—The filtered-x least mean square (FxLMS) algorithm
has been widely used for active noise control (ANC), which
has a satisfying convergence performance in the Gaussian noise.
Nevertheless, the ANC system can receive an unusual signal con-
taminated by the impulsive noise (IN) in practical applications,
which results in serious convergence performance degradation.
Some references can be found discussing this issue, but many of
the proposed solutions highly rely on the setup of pre-determined
parameters depending on special situations. In this paper, the
IN problem is dealt with by some robust algorithms, which are
adapted from order statistics. With the new FxLMS algorithms,
there is no pre-requisite to determine the parameters as required
in the past works. Through simulation results, we show that the
proposed method has better average noise reduction convergence
performance compared to other robust methods.

Index Terms—Active noise control, Impulsive noise, FxLMS,
Order statistics, Robust algorithm.

I. Iඇඍඋඈൽඎർඍංඈඇ
Noise cancellation methods can be generally divided into

two different approaches: one is passive cancellation and the
other is active cancellation. The passive cancellation approach
basically relies on the material property to prevent from the
noise. Due to practical limitations, the performance of the
passive cancellation methods may be subject to the material
engineering and physical design, usually also going with the
cost of higher price. Thanks to the improvement of modern
digital technology, the active cancellation approach has re-
ceived a lot of attention, usually together with a satisfying
performance and rich study in recent years.

In recent years, more and more audio applications have been
introduced because of the advance in technology development.
The requirement of active noise control (ANC) is widely found
in cars, mobile phones, fans, etc. ANC goes to process the
received sound waves in an earphone, for example, and the
secondary path tries to generate the signal which is close to
the noise appearing in the primary path. The noise is then
canceled through a loudspeaker embedded in the earphone.
ANC can improve the efficiency in noise control with lower
volume and cost [1][2]. The most widely used method in the
ANC approach is to apply the filtered-x least mean square
(FxLMS) algorithm [2]. The algorithm has the advantages of
robust performance [3], low computational complexity, and
ease of implementation.

When the ANC system encounters the impulsive noise,
the FxLMS algorithm will not reach a satisfying steady-
state performance that can be achieved in the Gaussian noise
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Fig. 1: Functional block of the conventional FxLMS algorithm.

condition. In [4], a new robust method called the filtered-x
least mean p-power algorithm (FxLMP) was proposed, but
its cost function J(n) = E{|e(n)|p} ≈ |e(n)|p, where p is
an integer number, indicates that the better results require
knowing the prior parameter p, which is not an easy task.
In [5], there is a simple variant of the FxLMS algorithms
for ANC to deal with the impulsive noise. In [6] and [7],
Akhtar’s algorithm improved the performance better than the
Sun’s algorithm [5], where if the reference signal is over a
pre-determined threshold. In above mentioned algorithms, the
common problem using those methods is to find appropriate
threshold parameters, which may be not easy to be well used
with on-line operation in general ANC systems. In [8], some
of the robust functions were introduced including classical
functions such as Huber, Tukey bisquare, and Hampel. In [9],
the Hampel function was brought into the LMS algorithm to
resist impulsive noise in ANC.

The method proposed in this paper applies the order
statistics. In [10]-[11], order statistics type LMS algorithms
were developed. Here, the trimmed mean FxLMS is studied
together with impulsive noise detection and preprocessing.
From the analysis of averaged noise reduction performance,
simulation results show that the trimmed mean FxLMS has
good robustness compared to other robust method to deal with
the impulsive noise.

II. FඑLMS Aඅ඀ඈඋංඍඁආ
Fig. 1 depicts the functional block of the conventional

single-channel feed-forward ANC structure using the FxLMS
algorithm [2]. The noise source x(n) is received from the
receiver microphone, the system response P (z) in the primary
path is modeled for the physical channel between the receiver
microphone and the error microphone, and the secondary-
path response S(z) models the characteristics of the secondary
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loudspeaker in the earphone. In addition, Ŝ(z) is the estimated
response of S(z) in the FxLMS algorithm, which can be ob-
tained by on-line or off-line methods in practical applications.
The objective of the adaptive filter W (z) is to minimize the
residual error signal e(n), which essentially establishes the
adaptation criterion in the FxLMS algorithm.

Assuming W (z) is an finite impulse response (FIR) filter
of the length of L taps, the corresponding output signal y(n)
is expressed as

y(n) = wT (n)x(n), (1)

where w(n) = [w0(n), w1(n), w2(n), · · · , wL−1(n)]
T

is the tap coefficient vector of W (z) and x(n) =
[x(n), x(n− 1), · · · , x(n− L+ 1)]

T is the L × 1 input
signal vector. The residual error signal e(n) received by the
error microphone is given by

e(n) = d(n)− y
′
(n), (2)

and d(n) = p(n) ∗ x(n) is the primary disturbance noise and
y

′
(n) = s(n) ∗ y(n) is the secondary antinoise signal, where

∗ denotes convolution, p(n) is the impulse response of the
primary path model P (z), and s(n) is the impulse response
of the secondary path model S(z).

It is known that the least mean square (LMS) algorithm
minimizes the mean square error (MSE) of the error signal to
adaptively find the optimum filter coefficients. The negative
gradient direction with a step size µ is established for the LMS
algorithm with the tap update equation, usually written as

w(n+ 1) = w(n)− µ

2
∇J(n), (3)

where ∇ denotes taking gradient, which is used to minimize
the MSE of the cost function

J(n) = E[e2(n)] ≈ e2(n), (4)

where E[·] is the expectation operation. The FxLMS algorithm
is modified by giving

w(n+ 1) = w(n) + µ1e(n)xs(n), (5)

where µ1 is the step size for the FxLMS algorithm, xs(n) =
[xs(n), xs(n− 1), · · · , xs(n− L+ 1)]

T , and xs(n) = ŝ(n) ∗
x(n), where ŝ(n) is the impulse response of the estimated
secondary path model Ŝ(z).

III. Rඈൻඎඌඍ FඑLMS Aඅ඀ඈඋංඍඁආ
A. Impulsive Noise Preprocessing

In the FxLMS structure, the input signal x(n) will be first
passed through Ŝ(z). However, Ŝ(z) is an FIR filter that
can span the influence of the impulsive noise in computing
W (z). Since the occurrence probability of the impulsive noise
is small and the noise amplitude is very large in practical
applications, we can preprocess the signal x(n) to remove the
large inputs before it passes through Ŝ(z).

Suppose σg is the standard deviation of x(n) after removing
the impulsive noise. Based on the 3σg property of the Gaussian
signal, the probability of a Gaussian input signal which value
does not exceed 3σg accounts for approximately 0.99. Hence,
we may think that when the input signal exceeds 3σg , it can be

regarded as an impulsive noise. Then, a simple preprocessing
rule is proposed as follows:

x′(n) =

{
x(n), if x(n)∈[−3σg,+3σg]

x(n− 1), otherwise
(6)

That is, we simply replace the detected sample contaminated
by the impulsive noise with the sample at its previous time.

B. Trimmed-Mean FxLMS Algorithm

The well-known mean filter is a linear method that is gen-
erally used to reduce noise and is suitable in a Gaussian noise
environment, but it cannot provide good results if it encounters
the impulsive noise. The principle of order statistics lies in
robustness applications with sorting a range of values, which
is nonlinear and can perform well under impulsive noise. The
trimmed mean filter is based on the combination of linear and
nonlinear methods. The first step is to select a range of samples
and then to arrange the values   from small to large. After
removing the maximum and minimum outliers, the remainder
is to calculate the result by averaging. When the adaptive
filter W (z) in an ANC system encounters the impulsive noise,
the convergence of W (z) will be destroyed, resulting in a
performance decrease and even an entire convergence failure.

To replace the original FxLMS with the proposed trimmed-
mean FxLMS (short for Trm-FxLMS), we define an L × N
matrix Z(n) as Z(n) = [e′(n−N+1)x′Ts (n−N+1) · · · e′(n−
1)x′Ts (n−1) e′(n)x′Ts (n)], where x′s(n) = ŝ(n)∗x′(n), which
can be represented as the matrix in the following:

Z(n) =


z11(n) z12(n) · · · z1N (n)
z21(n) z22(n) · · · z2N (n)

...
...

. . .
...

zL1(n) zL2(n) · · · zLN (n)

 . (7)

After rearranging the elements from small to large for each
row in the matrix, we have a new matrix

Z̃(n) =


z̃11(n) z̃12(n) · · · z̃1N (n)
z̃21(n) z̃22(n) · · · z̃2N (n)

...
...

. . .
...

z̃L1(n) z̃L2(n) · · · z̃LN (n)

 (8)

where z̃i1(n) ≤ z̃i2(n) ≤ · · · ≤ z̃iN (n), i = 1, 2, · · · , L.
Then, defining the trimmed mean operation of Z(n) as

trm{Z(n)}N,M =
1

N − 2M


∑N−M

i=M+1 z̃1i(n)∑N−M
i=M+1 z̃2i(n)

...∑N−M
i=M+1 z̃Li(n)

 , (9)

the update equation of the trm-FxLMS algorithm is

w(n+ 1) = w(n) + µwtrm{Z(n)}N,M (10)

where N is assumed to be an odd number, for simplicity, and
2M samples are moved out from the average operation in the
N -point trm-FxLMS algorithm. If M is too small, the FxLMS
algorithm is easy to be affected by the impulsive noise.
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There are two special cases that should be noticed when
M = (N − 1)/2 and M = 0.

a) median FxLMS: If M = (N − 1)/2, the re-
mained sample for the FxLMS method is the median of
[zi1(n) zi2(n) · · · ziN (n)], i = 1, 2, · · · , L. The trm-FxLMS
actually becomes the median FxLMS (or short for med-
FxLMS).

b) mean FxLMS: If M = 0, no sample is discarded in
the trm-FxLMS, that is, the trm-FxLMS becomes the mean
FxLMS. In the Gaussian noise, the mean FxLMS approaches
the conventional FxLMS and has better convergence perfor-
mance than the trm-FxLMS with M ̸= 0.

C. FxLMS/trm-FxLMS Switching
The trm-FxLMS has better performance than the conven-

tional FxLMS in the impulsive noise while worse in the
Gaussian noise. To profit from both merits, the robust al-
gorithm is to switch the LMS update equation between the
conventional FxLMS and trm-FxLMS based on the 3σg rule.
Only if the impulsive noise is detected, the trm-FxLMS is
employed, otherwise, the conventional FxLMS is performed.

IV. Sංආඎඅൺඍංඈඇ Rൾඌඎඅඍඌ
In this section, the performance of the trm-FxLMS

algorithm is compared with those of the conventional
FxLMS and other robust FxLMS algorithms such as the
mean FxLMS, med-FxLMS, log-FxLMS, Huber-FxLMS, and
Hampel-FxLMS algorithms. The trimmed mean [12] is defined
as calculating the mean after discarding given parts of the
samples of values at high and low ends. The tap lengths of
the primary and secondary path models, P (z) and S(z), are
65 and 49, respectively. The frequency responses of the two
models are plotted in Figs. 2 and 3. The effective tap length
of the adaptive filter W (z) is chosen as 50.

In this work, the impulsive noise is simulated with the sym-
metric alpha stable distribution which characteristic function
is written by [13]

φ(t) = exp(jat− γ|t|α) (11)

where α is a predetermined value in [0, 2], a is the location
parameter, γ is the scale parameter and γ > 0. The smaller
the α, the longer the tail of this distribution becomes, and
the proportion of impulsive noise will increase. If α = 2, the
distribution is Gaussian. If α = 1, it becomes the Cauchy
distribution. When γ = 1, it is called the standard SαS
distribution. We consider two cases of α = 2 and α = 1.8
in our simulations. For Case 1, α = 2, we choose N = 11
since the input signal is Gaussian. For Case 2, α = 1.8, we
choose N = 61 to deal with the impulsive noise. M is chosen
to be 20% of N for the trm-FxLMS. Besides, the estimated
secondary path model Ŝ(z) is obtained by Chang’s online
secondary path estimation FxLMS structure [2].

We compare the performance in terms of the metric of
averaged noise reduction (ANR) [14]. Define ANR in decibel
(dB) as

ANR(n)[dB] = 20log10

(
Ae(n)

Ad(n)

)
(12)
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Fig. 2: Frequency response of the primary path model P (z).
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Fig. 3: Frequency response of the secondary path model S(z).

where

Ae(n) = λAe(n− 1) + (1− λ)|e(n)| (13)
Ad(n) = λAd(n− 1) + (1− λ)|d(n)| (14)

where | · | represents absolute value, λ is a forgetting factor
and is set as 0.999.

A. Experimental Case 1
The results of ANR are shown in Fig. 4. We turn off the

online secondary path estimation at the 1.4× 104 iteration to
check the change of convergence performance. In the Gaussian
noise, we can see that the FxLMS and mean FxLMS have
better convergence rate while med-FxLMS and trm-FxLMS
are worse and approach other robust FxLMS methods. In
additions, adding the switching method is effective to let med-
FxLMS and trm-FxLMS work perfectly in the Gaussian noise.
As the on-line secondary path estimation function is turned
off, the ANR performances of those robust FxLMS can be
improved about 5dB except for the log-FxLMS.

B. Experimental Case 2
In this case, the input signal x(n) is modeled by the SαS

distribution with α = 1.8 for simulating the impulsive noise as
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Fig. 4: ANR curves of the compared FxLMS algorithms in
Experiment Case 1.
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Fig. 5: Input signal x(n) modeled by the SαS distribution with
α = 1.8 for simulating the impulsive noise in Experiment Case
2.

shown in Fig. 5. The online secondary path estimation mode is
turned to offline at the 7.5×104 iteration. The results of ANR
are shown in Fig. 6, where we can see that the convergence
rate of the trm-FxLMS is better than other algorithms even
when the switching method is not employed. The conventional
FxLMS fails in convergence such that we do not plot its
ANR result here and the mean FxLMS becomes the worst
one in this comparison. As the switching method is applied,
the performances of the med-FxLMS and the trm-FxLMS are
greatly improved.

V. Cඈඇർඅඎඌංඈඇ

The proposed order statistics type FxLMS, specially the trm-
FxLMS, has sufficient robustness to deal with the influence
of the impulsive noise. According to the simulation results,
even when the input signal has intensive impulsive noises, the
proposed algorithm still can effectively suppress the impulsive
noise with a good ANR performance. We can see that the pro-
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Fig. 6: ANR curves of the compared FxLMS algorithms in
Experiment Case 2.

posed method has better convergence performance compared
to other robust FxLMS methods.
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