
River water quality estimation based on
convolutional neural network

Takahiro Oga∗, Yo Umeki†, Masahiro Iwahashi∗ and Yoko Matsuda‡
∗ Dept. of Electrical, Electronics and Information Engineering, Nagaoka Univ. of Tech.,

Nagaoka, Niigata, Japan.
E-mail:s163119@stn.nagaokaut.ac.jp, iwahashi@vos.nagaokaut.ac.jp

† Dept. of Information Science and Control Engineering, Nagaoka Univ. of Tech.,
Nagaoka, Niigata, 940-2137 Japan.
E-mail:umeki@stn.nagaokaut.ac.jp

‡ Dept. of Civil and Environmental Engineering, Nagaoka Univ. of Tech.,
Nagaoka, Niigata, 940-2137 Japan.

E-mail: ymatsuda@vos.nagaokaut.ac.jp

Abstract—We propose an estimation method of water quality
of a river based on convolutional neural networks (CNNs), a
semantic segmentation method, and a new dataset. Since floods
are serious problems for riversides, various technologies have
been proposed as a safety system. So far, measurement methods
of water level are proposed as one of various systems. However,
these methods cannot estimate a flood which is caused by debris
flows because the flood does not follow the increasing water level.
To estimate floods, water quality is more important information
because water become muddy before floods. Hence, we estimate
water quality using monitoring images and CNNs which trained
new dataset. Furthermore, we combine a pre-processing using a
semantic segmentation method. Since regions of no-river water
often produces misdetections, we exclude these regions using a
semantic segmentation method before CNNs. In simulations, it
was observed that the proposed method objectively outperforms
state-of-the-art methods in accuracy based on our dataset.

I. INTRODUCTION

Floods are serious problems for riversides and various
methods of flood estimation have been proposed as a safety
system [1], [2]. Since floods and water level have strong
correlation, several methods of flood estimation use water level
estimation [3]–[6]. Traditionally, water level indicator based
methods are proposed [3], [4]. Although the methods realize
to set indicators into water, the system are too expensive.

Recently, flood estimation methods based on water level
are proposed by using monitoring images and edge detection
methods. A water level estimation based on edge detection
is proposed [5]. They remove effects of weather by using
frame addition for accurate estimation. Another type of the
method considers light reflections using difference of inter-
frame reflectance [6]. These methods realize inexpensive and
accurate estimation methods of floods.

Unfortunately, water level based flood estimation methods
cannot completely estimate floods because a flood which is
caused debris flows do not follow increasing water levels [7].
Hence, we need to consider other factors of floods for the
estimation. Floods have an another sign which is water quality

Fig. 1. Residual block architecture.

to become muddy [8], [9]. For the above reasons, river water
quality is effective to estimate floods.

To estimate water quality, we propose a new dataset and
compared CNNs architectures using our dataset. We compared
CNNs such as AlexNet, NIN, GoogLeNet, VGGNet, ResNet
WideResNet and ResNeXt [10]–[16]. We trained these CNNs
architectures using our dataset. The dataset has natural river
images which have two classes “Clear” and “Muddy”. Then,
input images are classified into “Clear” and “Muddy” classes
using trained CNNs model.

Furthermore, we apply a pre-processing to estimate water
quality accurately. Usually, natural images of river contain
different regions such as grass, sand, sky and tree. These
regions often products worse results of water quality estima-
tion and these are easily remove using semantic segmentation
methods. Hence, we apply a preprocessing before training of
CNNs using semantic segmentation methods. In experiment,
compared with state-of-the-art CNNs, the proposed method
shows the better results in accuracy.

1305

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018



Fig. 2. Overview of proposed method.

II. FUNDAMENTAL METHODS FOR WATER QUALITY
ESTIMATION

A. Basic stractures of CNNs

In this section we explain CNNs architectures [17], [18].
CNNs architectures are mainly constructed convolutional lay-
ers, pooling layers and a fully-connected layer. Convolutional
layers extract feature maps from an input image and pooling
layers choose features which explain the image well. CNNs
architecture have some convolutional layers and pooling layers
alternatively. In the last of architecture, a fully-connected layer
classify images using extracted image features.

Past a decade, CNNs gave large effects for image process-
ing and large amount of CNNs architectures proposed. We
introduce main architectures of CNNs. AlexNet is baseline
method of CNNs architectures. AlexNet has 8 layers and the
architecture can learn large datasets with short times [10].
NIN is the stacking of multiple mlp layers [11]. The mlp
layer includes the multi-layer perceptron. GoogLeNet has
the inception module [12]. The inception module combines
each results after uses some convolutional layers of various
parameters. VGGNet has a simple construction by consecutive
small convolutional layers [13]. This architecture is often used
classification tasks. ResNet can learn in substantially deep
architecture because of including the residual block [14]. The
residual block is shown in Fig. 1. The residual block which
adds input data to output data is effective to construct deep
networks. Recently, as derivation of the ResNet, WideResNet
and ResNeXt are proposed [15], [16]. WideResNet is con-
structed to increase filters of the ResNet. ResNeXt transforms
convolutional layers into parallel convolutional layers.

B. Semantic segmentation

We explain the state-of-the-art method of semantic segmen-
tation which uses the ADE20K dataset and PSPNet [19], [20].
PSPNet is a CNNs architecture which have some pooling
layers after a convolutional layer. To extract different fea-
tures using some pooling layers, the architecture can classify
complex classes. To train the architecture with the ADE20K
dataset, the method has high accuracy of segmentation for
these complex classes.

III. PROPOSED METHOD

A. Framework

We propose an estimation method of water quality of a river
based on CNNs, a semantic segmentation method, and a new
dataset. Fig. 2 shows the flow of the proposed method. First,
we train CNNs architectures using our dataset whose images
are natural river and given classes “Clear” and “Muddy”. The
training images are cropped by semantic segmentation method
in the pre-processing. Second, the proposed model estimate
water quality of river images. Input images are pre-processed
as with training and trained models classify input images into
“Clear” or “Muddy” classes.

B. Pre-processing

In this section, we explain pre-processing using semantic
segmentation method. Although river images usually contain
not water regions, these regions often products worse results.
Hence, we remove these regions using the state-of-the-art se-
mantic segmentation method which uses explained in Section
II-B. The method classifies pixels of an input images into 150
classes. Since likely water regions are almost “river” in a river
image, we crop water, lake, river, sea, and natatorium as river
regions. Thanks to the strategy, an input image has regions of
river water only.

C. Dataset construction

We construct a dataset for the water quality estimation.
We collected river images from “river” class of the Place365
dataset [21] and images of Nagaoka camera monitoring sys-
tem, and classified images into two classes, “Clear” and
“Muddy”. “Clear” images are defined images whose river
bottom can be seen and water colors are blue and green [22].
Conversely, “Muddy” images defined as having brown water.
Based on the above definition, the ground truth is provided by
various persons with the majority rule.

IV. EXPERIMENT

For experiments, we compare CNNs architectures and use
images in the proposed dataset as training, validation images.
There are 400 training images, 50 validation images. We use
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(a)Input images.

(b)Segmentation results.

(c)Extract results.

Fig. 3. Input images.

TABLE I
NUMBER OF LAYERS AND LEARNING RATE FOR CNNS.

Number of layers Learning rate
AlexNet [10] 8 0.001

NIN [11] 6 0.001
GoogLeNet [12] 22 0.1

VGGNet [13] 19 0.05
ResNet [14] 20/50/101 0.01

WideResNet [15] 16 0.1
ResNeXt [16] 50 0.1

two test datasets in this experiment. The proposed dataset
and the SUN dataset are used as test datasets [25]. The
SUN dataset has 100 river images which are classified into
two classes the same as the proposed dataset. We applied
several data augmentations and contrast normalization. Data
augmentations are random cropping and horizontal flipping
[10]. Training images are randomly cropped into 224 × 224
images at 5 times. After that, the cropped images are flipped
right and left. Consequently, the size of training images is
224 × 224, and the number of ground truth and image pairs
is 4000. In the training, we use the MomentumSGD as an
optimization and we set momentum = 0.9. The networks
trained with 100 epochs. In Table I, we show number of layers
and learning rate for CNNs architectures. We decrease learning
rate 0.1 times when the epochs = 50. We use a weight decay
[23] of 0.0005 and a mini-batch size of 32. We use the He
Initialization as initial values of convolution filters [24]. Also,
we do not change other conditions from original paper.

We train CNNs using the proposed dataset and evaluate the
proposed method using two test datasets. We show resultant
accuracy of the proposed dataset for each architecture in
the Table II, where “Prop.” means accuracy of the proposed
method which applying pre-processing and “Only CNNs”
means accuracy of CNNs classification which not applying

TABLE II
TEST ACCURACY OF THE PROPOSE DATASET[%].

Prop. Only CNNs Difference
AlexNet [10] 88.0 71.0 +17.0

NIN [11] 92.0 84.0 +12.0
GoogLeNet [12] 91.0 86.0 +5.0

VGGNet [13] 93.0 85.0 +8.0
ResNet20 [14] 91.0 82.0 +9.0
ResNet50 [14] 95.0 84.0 +11.0

ResNet101 [14] 93.0 70.0 +23.0
WideResNet [15] 92.0 84.0 +8.0

ResNeXt [16] 94.0 84.0 +10.0
Average 92.1 82.2 +9.9

TABLE III
TEST ACCURACY OF THE SUN DATASET[%].

Prop. Only CNNs Difference
AlexNet [10] 86.0 76.0 +10.0

NIN [11] 86.0 79.0 +7.0
GoogLeNet [12] 85.0 82.0 +3.0

VGGNet [13] 89.0 75.0 +14.0
ResNet20 [14] 86.0 77.0 +9.0
ResNet50 [14] 90.0 83.0 +7.0

ResNet101 [14] 86.0 80.0 +6.0
WideResNet [15] 83.0 82.0 +1.0

ResNeXt [16] 92.0 83.0 +9.0
Average 87.0 79.6 +7.4

pre-processing. “Difference” means the difference accuracy of
the proposed method and accuracy of only CNNs. The com-
pared CNNs are state-of-the-art ones, AlexNet [10], NIN [11],
GoogLeNet [12], VGGNet [13], ResNet [14], WideResNet
[15], and ResNeXt [16] in this paper. Compared with only
CNNs, the proposed method shows high accuracy with all of
CNNs architectures. In the proposed method, almost all of the
CNNs shows over 90% of accuracy on the proposed dataset.
The propose method is higher than only CNNs by 9.9% on
average of accuracy. Similarly, we show resultant accuracy of
the SUN dataset in the Table III. Accuracy of the SUN dataset
is improved by pre-processing as with the proposed dataset.
The propose method is higher than only CNNs by 7.4% on
average of accuracy.

Classification results of water quality are shown in Fig. 4.
In the images, several CNNs produce misdetection in “Only
CNNs”. We can see improved results using our strategy in
“Prop.”. From these results, it is observed that the proposed
method out performs state-the-art ones for water quality esti-
mation as mentioned in Section I.

V. CONCLUSION

In this paper, we proposed an estimation method of water
quality of a river based on CNNs, semantic segmentation,
and a new dataset. Our dataset has river images and classes
which are “Clear” and “Muddy”. The proposed method train
images which are extracted water regions using a semantic
segmentation method. In experiment, the proposed method
provides better results than the state-of-the-art one on the
proposed dataset and the SUN dataset.
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AlexNet [10] “Muddy” “Muddy” “Muddy”
NIN [11] “Clear” “Muddy” “Clear”
GoogLeNet [12] “Clear” “Clear” “Clear”

Prop. VGG [13] “Clear” “Clear” “Muddy”
ResNet50 [14] “Clear” “Muddy” “Muddy”
WideResNet [15] “Clear” “Clear” “Clear”
ResNeXt [16] “Clear” “Muddy” “Clear”
AlexNet [10] “Muddy” “Muddy” “Clear”
NIN [11] “Muddy” “Clear” “Muddy”
GoogLeNet [12] “Muddy” “Clear” “Muddy”

Only CNNs VGG [13] “Muddy” “Clear” “Clear”
ResNet50 [14] “Muddy” “Clear” “Clear”
WideResNet [15] “Clear” “Clear” “Clear”
ResNeXt [16] “Muddy” “Clear” “Muddy”

Ground Truth “Clear” “Muddy” “Muddy”

Fig. 4. Results of classification by proposed method.
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