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Abstract—By considering the balance unfolding scheme does
help to catch the global information for tensor completion
and the recently proposed tensor ring decomposition, in this
paper a weighted multilinear tensor ring decomposition model
is proposed for tensor completion and called MTRD. Utilizing
the circular dimensional permutation invariance of tensor ring
decomposition, a very balance matricization scheme < k, d >-
unfolding is employed in MTRD. In order to evaluate MTRD, it
is applied on both synthetic data and image tensor data, and
the experiment results show that MTRD are able to achieve
the desired relative square error by spending much less time
than its compared methods, i.e. TMac-TT and TR-ALS. The
results of image completion also show that MTRD outperforms
its compared methods in relative square error. Specifically, TMac-
TT and TR-ALS fails to get the same relative square error as
MTRD and TR-ALS prevails TMac-TT but requiring a large
amount of running time. To sum up, MTRD is more applicable
than its compared methods.

I. INTRODUCTION

In recent years, tensor completion has attracted consider-
able attention as the success of matrix completion [1] [2]
[3] [4]. Tensor is the generalization of matrix and tensor
decomposition [5] [6] [7] is often viewed as the strong tool
for data representation. Lots of tensor completion methods
is thus proposed [8] [9] [10] [11] [12] [13]. Among them,
the incomplete data is often viewed to have the Tucker
and tensor train (TT) structure, e.g. simple low rank tensor
completion (SiLRTC) [11], fast low rank tensor completion
(FaLRTC) [11], low-rank tensor completion by parallel matrix
factorization (TMac) [12], SiLRTC with TT rank (SiLRTC-
TT) [14] and TMac with TT rank (TMac-TT) [14].

In [11], SiLRTC and FaLRTC employ tensor nuclear-norm
minimization and use the singular value decomposition (SVD)
in the algorithm, which lead to the expensive computation and
is not applicable for large-scale tensor data completion. To
alleviate this problem, TMac [12] is proposed to recover a
low-rank tensor by simultaneously performing low-rank matrix
factorizations to all-mode matricizations of the underlying
tensor. Although TMac is non-convex, but TMac performs
consistently throughout the test and gets the better results than
FaLRTC. There have been some progress in formulating low
rank tensor completion (LRTC) by viewing the incomplete
data with Tucker structure, however, its matricization is based
on mode-k unfolding which leads to the matrix unbalance.
Specifically the mode-k unfolding takes one mode for rows
of matrix and the rest for columns. Considering the small
upper bound of tensor rank may fail to describe the global

information and the matrix rank minimization is only efficient
when the matrix is more balance, [14] proposes SiLRTC-TT
and TMac-TT. The key advantage of SiLRTC-TT and TMac-
TT is adopting the more balance matricization scheme k-
unfolding to improve the performance of the method. SiLRTC-
TT and TMac-TT are shown outstanding than SiLRTC and
TMac, and among them TMac-TT performs best. However,
one crucial drawback is that the balances of the k-unfolding
matrices X[k] ∈ RI1...Ik×Ik+1...IN with k = 1, . . . , N are very
different, specifically the middle matrices are generally more
balance than the border matrices.

The drawback of TMac-TT is in fact caused by the limi-
tation of TT decomposition. In particular, as outlined in [15],
TT decomposition has following limitations. i) TT model has
rank-1 constraints to the border factors, i.e. R0 = RN = 1;
ii) TT-ranks always have a fixed pattern, i.e., smaller for the
border factors and larger for the middle factors; iii) the multi-
plications of TT factors are not permutation invariant. Taking
into account these limitations, Zhao et al. [15] propose tensor
ring (TR) decomposition which can be viewed as a linear
combination of TT decomposition. By employing the trace
operation, TR decomposition removes the rank-1 constraints
for border factors and decomposes N th-order tensor into N
3th-order factor tensors. In addition, TR model is circular
dimensional permutation invariance due to the properties of
trace operation.

Recently, [16] proposes a new tensor completion based
on TR decomposition, namely TR-ALS. TT-ALS [17] with
singular value decomposition (SVD) has been firstly used for
initialization of TR-ALS, which will lead to a large amount
of running time especially for large scale tensor data. Sub-
sequently TR-ALS mainly applies an alternating least square
method to update factor tensors, i.e. updating each factor ten-
sor while remaining the rest factor tensors fixed. Unfortunately,
TR-ALS requires a large amount of time to update factor
tensors. Specifically, letting N th-order tensor X ∈ RI×···×I

and factor tensors Uk ∈ RR×I×R with k = 1, . . . , N , the
overall computational complexity of updating all factor tensors
within one iteration is max(O(NPR4),O(NR6)) [16], where
P is the total number of observed entries. As the tensor
order and rank increase, the high computational complexity
significantly leads to a large amount of time, which has been
shown in our experiment. Thus, TR-ALS is not applicable for
large scale tensor data.

Considering the balance unfolding scheme does help to
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catch the global information [12] [14] and the recently pro-
posed TR decomposition has a powerful and generalized repre-
sentation abilities [17], we propose a novel tensor completion
method by a weighted multilinear tensor ring decomposition
in this paper, simply denoted as MTRD. Utilizing the circular
dimensional permutation invariance, a very balance matrix
scheme (about half of modes versus the rest) is proposed
in MTRD, which is the most balance scheme to the best of
our knowledge and denoted as < k, d >-unfolding, where
generally d =

⌊
N
2

⌋
and b.c denotes the floor operator. More

details of MTRD will be described in the latter section. In
order to evaluate the efficient of MTRD, MTRD is compared
with TMac-TT and TR-ALS algorithms on both synthetic
tensor data and images.

The rest of the paper is organized as follows. Section II pro-
vides some notations and preliminaries of tensors. In Section
III, the formulation and algorithm for MTRD are described.
Section IV presents the simulation results on synthetic data and
images completion. Finally, Conclusion is provided in Section
V.

II. NOTATIONS AND PRELIMINARIES OF TENSORS

In this paper, some notations and preliminaries of tensors
[18] are adopted. Scalars, vectors and matrices are denoted
by lowercase letter (e.g. x), boldface lowercase letters (e.g. x)
and capital letters (e.g. X) respectively. A tensor is a multi-
dimensional array and its mode is the number of its dimension.
A N -mode tensor is denoted by calligraphic letters, e.g. X ∈
RI1×···×IN where Ik, k = 1, . . . , N denotes the dimension
along the mode k . An element of a tensor X is denoted by
X (i1, . . . , iN ) or Xi1,...,iN , where 1 ≤ ik ≤ Ik, k = 1, . . . , N .
X (:, i2, . . . , iN ) is used to denote the fiber along mode 1, and
X (:, :, i3, . . . , iN ) denotes the slice along mode 1 and mode
2 and so forth. The Frobenius norm of a tensor is the square
root of the sum of the squares of all its elements, i.e., ‖X‖F =√∑I1,...,IN

i1,...,iN=1 X (i1, . . . , iN )2.
Definition 1: (k-unfolding [15]) Let a N -mode tensor X ∈

RI1×···×IN , k-unfolding of X is denoted by X[k] of size∏k
j=1 Ij ×

∏N
j=k+1 Ij with its elements defined by

X[k](i1 . . . ik, ik+1 . . . iN ) = X (i1, i2, . . . , iN ) (1)

Definition 2: (Middle unfolding) Let a N -mode tensor
X ∈ RI1×···×IN , the middle unfolding of X is of size∏N−1

j=2 Ij×I1IN , according the ordering of indices associated
to the 2 modes, two types of middle unfolding operations
are defined respectively, i.e. Mf (X ) ∈ RI2I3...IN−1×INI1 ,
Mb(X ) ∈ RI2I3...IN−1×I1IN . Let Xf = Mf (X ) and Xb =
Mb(X ), then their elements are defined respectively by

Xf (i2i3 . . . iN−1, iN i1) = X (i1, i2, . . . , iN ) (2)
Xb(i2i3 . . . iN−1, i1iN ) = X (i1, i2, . . . , iN ) (3)

Definition 3: Let a N -mode tensor X ∈ RI1×···×IN ,
←−
k (a)

denotes the mode which is a away behind the mode k.
Specifically, if N = 5,

←−
3 (3) = 5,

←−
3 (1) = 2 and

←−
3 (0) = 3

denote the 5th mode, 2th mode and 3th mode respectively.

Definition 4: Let a N -mode tensor X ∈ RI1×···×IN ,
−→
k (a)

denotes the mode which is a away in front of the mode k.
Specifically, if N = 5,

−→
3 (0) = 3,

−→
3 (1) = 4,

−→
3 (3) = 1

denote the 3th mode, 4th mode and 1th mode respectively.
Definition 5: (< k, d >-unfolding) Let a N -mode tensor

X ∈ RI1×···×IN , < k, d >-unfolding of X is denoted by
X<k,d> of size I←−

k (d−1)
. . . I←−

k (0)
× I−→

k (1)
. . . I−→

k (N−d)
with

its elements defined by

X<k,d>(i←−
k (d−1)

. . . i←−
k (0)

, i−→
k (1)

. . . i−→
k (N−d)

) =

X (i1, i2, . . . , iN ) (4)

Definition 6: (Tensor ring decomposition) Let a N -mode
tensor X ∈ RI1×···×IN with its TR rank [R1, R2, . . . , RN ],
then the elements of X are represented by

X (i1, i2, . . . , iN ) = Tr(U1(:, i1, :)U2(:, i2, :) . . .UN (:, iN , :)) (5)

where Uk ∈ RRk−1×Ik×Rk , k = 1, . . . , N , R0 = RN and Tr(.)
denotes the trace operation. The tensor ring decomposition of
tensor X is denoted by X = <(U1, . . . ,UN ).

III. FORMULATION AND ALGORITHM FOR MTRD

Considering the weighted multilinear matrix factorization
model outperforms tensor nuclear-norm minimization model
[12] [14] and TR decomposition outperforms TT decomposi-
tion [17], a novel tensor completion method called MTRD is
proposed in this paper. In fact, MTRD is a weighted multilin-
ear tensor ring decomposition model. Utilizing the circular
dimensional permutation invariance of TR decomposition,
< k, d >-unfolding is employed in MTRD, where generally
d =

⌊
N
2

⌋
. It is easy to note that < k, d >-unfolding is the

better balance scheme than k-unfolding in TMac-TT. Specif-
ically, letting X ∈ RI1×···×IN , I1 = I2 = · · · = IN = I ,
N = 2d, the balance of k-unfolding matrix X[k] ∈ RIk×IN−k

is obviously influenced by mode k, i.e., the poorer the balance
is, the closer the mode k is to the two sides. While, the
< k, d >-unfolding matrix X<k,d> ∈ RId×Id

is invariance
with k and the balances of X<k,d> with k = 1, . . . , N are
identity and best.

Letting the low-rank tensor M ∈ RI1×···×IN and TR rank
[R1, . . . , RN ], MTRD employs TR decomposition to each <
k, d >-unfolding matrix M<k,d> of M such that M<k,d> ≈
<(Wk,Hk) for k = 1, . . . , N . One common variable X is
introduced to relate these tensor ring decomposition. Formally,
MTRD recoversM by solving the following multilinear tensor
ring decomposition model:

min
Wk,Hk,X

:
∑N

k=1
1
2αk‖<(Wk,Hk)−X<k,d>‖2F (6)

s.t. : XΩ =MΩ.

where Wk ∈ RR←−
k (d)
×mk×R←−k (0) , Hk ∈ RR←−

k (0)
×nk×R←−k (d) ,

X<k,d> ∈ Rmk×nk , mk = I←−
k (d−1)

. . . I←−
k (0)

, nk =

I−→
k (1)

. . . I−→
k (N−d)

, αk = min(mk,nk)∑N
k=1 min(mk,nk)

> 0,
∑N

k=1 αk =

1. d =
⌊
N
2

⌋
, b.c denotes the floor operator.
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Let X̃<k,d> = <(Wk,Hk), then X̃<k,d> can be expressed
in an elements-wise form given by

X̃<k,d>(mk, nk) = Tr(Wk(:,mk, :)Hk(:, nk, :)) (7)

where 1 ≤ mk ≤ mk, 1 ≤ nk ≤ nk. Equation (7) is equivalent
to

X̃<k,d>(mk, nk)

=
∑R←−

k (d)
,R←−

k (0)

r←−
k (d)

=1,r←−
k (0)

=1Wk(r←−
k (d)

,mk, r←−k (0)
)

Hk(r←−
k (0)

, nk, r←−k (d)
)

=
∑R←−

k (d)
R←−

k (0)

r←−
k (d)

r←−
k (0)

Wk(mk, r←−k (d)
r←−
k (0)

)Hk(r←−
k (d)

r←−
k (0)

, nk)

= Wk(mk, :)Hk(:, nk) (8)

where Wk = Mb(Wk) ∈ Rmk×R←−k (d)
R←−

k (0) , HT
k = Mf (Hk) ∈

Rnk×R←−k (d)
R←−

k (0) . Equation (8) can be easily rewritten in the
matrix form given by

X̃<k,d> = WkHk (9)

Thus,

<(Wk,Hk) = WkHk (10)

By substituting (10) into (6), (6) can be rewritten as

min
Wk,Hk,X

:
∑N

k=1
1
2αk‖WkHk −X<k,d>‖2F (11)

s.t. : XΩ =MΩ.

Apparently, in order to solve the problem given by equation
(11) we can first solve the following problem:

min
Wk,Hk,X

: 1
2‖WkHk −X<k,d>‖2F (12)

s.t. : XΩ =MΩ.

for k = 1, . . . , N . Taking into account that (12) is convex with
respect to each block of the variables Wk, Hk and X while
the other two are fixed, we apply the alternating least squares
method to (12) and have the following updates:

W t+1
k = Xt

<k,d>(Ht
k)T (Ht

k(Ht
k)T )†, (13)

Ht+1
k = ((W t+1

k )TW t+1
k )†(W t+1

k )TXt
<k,d>, (14)

Xt+1
<k,d> = W t+1

k Ht+1
k . (15)

where † denotes the Moore-Penrose pseudo-inverse. After
updating W t+1

k , Ht+1
k and Xt+1

<k,d>, X can be updated by
following formulation:

X t+1
i1,...,iN

=

 (
∑N

k=1 αkfold(Xt+1
<k,d>))i1,...,iN

(i1, . . . , iN ) /∈ Ω;
Mi1,...,iN (i1, . . . , iN ) ∈ Ω.

(16)

As shown in [12] that, no matter how Wk is computed,
only the products WkHk, k = 1, . . . , N affect X and thus
the recovery M. Hence, we shall update Wk in the following
more efficient way

W t+1
k = Xt

<k,d>(Ht
k)T , (17)

Algorithm 1 The MTRD algorithm.

Require: Missing entry zero filled tensor data M ∈
RI1×···×IN with observed index set Ω.

Parameters: t = 0, d, αk where k = 1, . . . , N .
1: Initialize: H0

k , X 0 with X 0
Ω =MΩ.

2: repeat
3: for k = 1to N do
4: W t+1

k ← (17)
5: Ht+1

k ← (14)
6: Xt+1

<k,d> ← (15)
7: end for
8: X t+1 ← (16)
9: t← t+ 1.

10: until A stopping criterion is met

which together with (14) gives the same products W t+1
k Ht+1

k

as those by (13) and (14).
MTRD algorithm is summarized in Algorithm 1 and the

algorithm can be stopped when the algorithm satisfies one of
following conditions: i) relative error (RE) of the tensor X
between two successive iteration achieves the desire accuracy;
ii)the number of iteration reaches maximum. The maximum
number of iteration is generally set as 1000. RE and RSE are
respectively defined as follow:

RE =
‖X t+1 −X t‖F
‖X t‖F

≤ tol (18)

where generally tol = 1e−8.

IV. EXPERIMENT

In order to test the efficient of MTRD, both synthetic data
and color images are used to evaluate its performance. MTRD
will be compared with other methods in terms of relative
square error (RSE) and running time . RSE between the
approximately recovered tensor X and the original one M
is defined as,

RSE =
‖X −M‖F
‖M‖F

(19)

A. Completion of Low TR Rank Tensor

In this section, we consider the completion problem on
synthetic tensor data. Specially, N th-order tensor data T ∈
RI1×···×IN with tensor ring rank [RTR

1 , . . . , RTR
N ] is generated

such that its elements are represented by a TR format. Specifi-
cally, its elements are T (i1, . . . , iN ) = Tr(U1(:, i1, :) . . .UN (:

, iN , :)), where Uk ∈ RRTR
k−1×Ik×R

TR
k with k = 1, . . . , N

are generated by standard Gaussian distribution N (0, 1). For
simplicity, we set Ik = I,RTR

k = R, k = 1, . . . , N and
the observed entries are chosen randomly from the tensor
based on a uniform distribution. The 4th-order, 7th-order,
10th-order tensor data are generated by respectively setting
mode dimension I = 25, 10, 6 and the corresponding TR
rank R = 8, 5, 3. These three tensor data were denoted as
T4D, T7D, T10D.
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MTRD, TMac-TT and TR-ALS are respectively applied on
these three tensor data and the RSEs with respect to observed
ratio p = 0.1, 0.3, 0.5, 0.7 are shown in TABLE I. And the
corresponding running time is shown in TABLE II. For MTRD
and TR-ALS, the true rank is given, i.e. RMTRD

1 = · · · =
RMTRD

N = R and RTR-ALS
1 = · · · = RTR-ALS

N = R. For TMac-
TT, the first TT rank is chosen as RTT

1 = · · · = RTT
N−1 = R

and the completion with this rank is called TMac-TT-LR. The
second TT rank is chosen as the double of the true rank, i.e.
RTT

1 = · · · = RTT
N−1 = 2R and the completion with this rank

is called TMac-TT-HR. The methods will stop when RSE ≤
1e-6 or the number of iteration reaches 1000.

The results in TABLE I show that both MTRD and TR-ALS
are successfully able to recover the tensor data and achieve the
competitive results, while TMac-TT with low and high rank,
i.e. TMac-TT-LR and TMac-TT-HR, fails to recover the tensor
data in all the cases. This could be caused by the fact that
TR decomposition can be viewed as the linear combination
of TT decomposition. TABLE II shows the corresponding
time for TABLE I. As shown in TABLE II, TR-ALS achieves
the desired RSE by spending more time than MTRD, which
is clearer as the tensor scale increases. This result may
be caused by the SVD in initialization of factors and the
high computational complexity max(O(NPR4),O(NR6)) of
updating all factors within one iteration, which significantly
leads to the high running time for large scale tensor data.
[16] has shown that the higher observed ratios, the fewer
iteration TR-ALS needs. However, the computational com-
plexity max(O(NPR4),O(NR6)) increases with respect to
the total amount of observed entries P , which significantly
results in more running time for one iteration as observed
ratio p increases. As a result, we find from TABLE II
that the running time of TR-ALS tends to increase as the
observed ratio increases in one case (e.g. T7D). In contrast,
our method MTRD significantly decreases the running time as
the observed ratio increases in one case. These results mean
that MTRD is more applicable than TR-ALS when processing
large high scale tensor data.

B. Image completion

In this section, the RGB images namely ’Lena’ and ’Pep-
pers’ are used to test the performance of MTRD and its
compared methods, i.e. TMac-TT and TR-ALS. All images
are initially presented by 3th-order tensor with size of 256×
256×3. For methods with TT rank or TR rank, the low order
tensors are often reshaped into high order tensors to improve
performance in classification [19] and completion [14] [16]
[20]. The 3th-order tensor is thus reshaped into 9th-order
tensor of size 4× 4× · · · × 4× 3. Observed entries of the im-
ages are chosen randomly according to a uniform distribution
and the observed ratios of p = 0.1, 0.3 are considered. The
methods are applied on the images and the performances of
RSE and its running time are compared. For simplicity, we set
all components of rank same, e.g. RMTRD

1 = · · · = RMTRD
N for

MTRD and so does for other methods. We stop the method
when the method converges or its iteration number reaches

Original
image

p = 0.1
RSE=0.1453
Time=21.17s

RSE=0.1081
Time=27.96s

RSE=0.1272
Time=258.16s

p = 0.3
RSE=0.0821
Time=36.22s

TMac-TT

RSE=0.0558
Time=38.80s

MTRD

RSE=0.0758
Time=7.20e4s

TR-ALS

Fig. 1: Recover the ’Lena’ image with 10% and 30% of
observed entries using different methods. Top image represents
the original image. Second row represents the copy of ’Lena’
image with 10% observed entries and the recovery results of
different methods. Third row represents the copy of ’Lena’
image with 30% observed entries and the recovery results of
different methods. Note that image is represented by 9th-order
tensor for all the methods.

1000. For all the methods, the minimum rank is chosen such
that the method gets the best performance. Fig. 1 and Fig. 2
respectively show the performance of the methods for ’Lena’
and ’Peppers’ images.

As shown in Fig. 1, compared with TMac-TT and TR-ALS,
MTRD gets the best results in RSE in all case of p by spending
acceptable running time. This result indicates that MTRD
outperforms TMac-TT and TR-ALS in image completion. TR-
ALS can achieve the better results in RSE than TMac-TT,
however spending a large amount of running time, which
could be caused by the SVD in initialization of factors and the
high computational complexity max(O(NPR4),O(NR6)) of
updating all factors within one iteration. Same experiment is
performed on the ’Peppers’ image and the recovery results
are shown in Fig. 2. The results also indicate that MTRD
prevails against the other two algorithms in image completion.
In summary, MTRD outperforms TMac-TT and TR-ALS in
image completion.

V. CONCLUSION

In this paper, an efficient algorithm MTRD has been pro-
posed based on a weighted multi-linear tensor ring decomposi-
tion model. By utilizing the circular dimensional permutation
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TABLE I: TMac-TT, MTRD, TR-ALS are applied on 4th-order, 7th-order, 10th-order tensor data and the RSEs with respect to
10%, 30%, 50%, 70% observed ratio are shown as follows. Note that TMac-TT-LR is TMac-TT with low rank and TMac-TT-HR
is TMac-TT with high rank.

T4D T7D T10D
0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

TMac-TT-LR 0.9973 0.7628 0.6276 0.4804 0.6913 0.6091 0.4959 0.3767 0.5976 0.4839 0.3947 0.2982

TMac-TT-HR 1.2731 0.7085 0.5631 0.4258 0.5519 0.4504 0.3618 0.2687 0.3412 0.2591 0.2046 0.1508

MTRD 9.91e-7 9.84e-7 7.83e-7 7.61e-7 9.54e-7 8.18e-7 7.05e-7 4.14e-7 9.63e-7 8.34e-7 9.16e-7 3.40e-7

TR-ALS 3.77e-7 4.61e-7 4.53e-7 1.89e-7 3.05e-8 7.47e-8 1.74e-8 8.19e-9 1.88e-7 7.35e-9 3.45e-7 7.42e-8

TABLE II: TMac-TT, MTRD, TR-ALS are applied on 4th-order, 7th-order, 10th-order tensor data and the running time (the
unit is second) with respect to 10%, 30%, 50%, 70% observed ratio are shown as follows. Note that TMac-TT-LR is TMac-TT
with low rank and TMac-TT-HR is TMac-TT with high rank.

T4D T7D T10D
0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

TMac-TT-LR 9.64 9.40 12.53 15.14 611.90 715.10 797.62 876.99 5.26e3 5.78e3 6.24e3 6.64e3

TMac-TT-HR 12.79 13.36 15.88 20.17 740.93 832.81 903.47 976.31 5.93e3 6.47e3 7.01e3 7.33e3

MTRD 27.62 4.93 2.47 1.52 203.74 65.31 35.72 23.75 2.12e5 711.83 338.55 223.33

TR-ALS 52.64 28.40 30.82 32.82 251.77 266.54 303.74 347.12 1.28e5 1.33e3 1.18e3 1.39e3

Original
image

p = 0.1
RSE=0.1599
Time=23.85s

RSE=0.0957
Time=28.31s

RSE=0.1273
Time=1.90e3s

p = 0.3
RSE=0.0742
Time=54.74s

TMac-TT

RSE=0.0415
Time=39.87s

MTRD

RSE=0.0540
Time=8.47e4s

TR-ALS

Fig. 2: Recover the ’Pepper’ image with 10% and 30% of
observed entries using different methods. Top image represents
the original image. Second row represents the copy of ’Pepper’
image with 10% observed entries and the recovery results of
different methods. Third row represents the copy of ’Pepper’
image with 30% observed entries and the recovery results of
different methods. Note that image is represented by 9th-order
tensor for all the methods.

invariance of tensor ring decomposition, a very balance ma-
tricization scheme < k, d >-unfolding is proposed. MTRD
and its compared methods are applied on both synthetic data
and images represented by high order tensor. The experiment
results of synthetic data completion show that MTRD is able
to achieve the desired relative square error by spending much
less time and requires less time as the observed ratio increases.
Moreover, MTRD gets the best performance in image comple-
tion. In summary, MTRD outperforms its compared methods
and is more applicable in practice.
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