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Abstract—Thanks to the multi-linearity nature of data, tensor
completion approaches often achieve significantly improved per-
formance than matrix based techniques. These methods mostly
use the Tucker model and need to frequently compute the
singular value decompositions (SVD) of unfolding matrices, hence
are not qualified for large-scale data. In this paper, a randomized
tensor completion method is proposed to solve this problem. In
the proposed method, efficient orthogonal random projection
is employed to take the place of SVD, which significantly
reduce the computational complexity. Extensive experimental
results on color image recovery applications showed that the
proposed method is considerably faster than state-of-the-art while
achieving comparable peak signal-to-noise ratio.

I. INTRODUCTION

Low-rank matrix completion problems have been studied
extensively in the past decades [1] [2] [3] [4] [5]. However,
these methods are not competent for higher-order data, such
as color images and videos. These kinds of higher-order
data could be represented by tensors without destroying their
natural structure. Therefore, tensor based methods have been
applied to many applications [6], such as computer vision
[7] [8] [9], data mining [10], collaborative filtering [11], as
well as color image and video recovery [12]. The color image
and video recovery problems could be reviewed as tensor
completion problems. In [7], Liu et al mentioned that the core
problem of the tensor completion lies on how to built up the
relationship between known elements and the unknown ones,
it also could be viewed as the low-rank approximation problem
of tensors. The low-rank tensor approximation problem can be
formulated as follows:

min
C

rank(C), s.t. PΩ(C −M) = 0, (1)

where C, the tensor for estimation which is supposed to low-
rank, and M is the tensor with missing values, Ω is an index
set denoting the indices of observations, P is a linear operator,
and PΩ means that extracts the elements which indices are in
the Ω set.

As the rank(·) function is a non-convex, Candès and Recht
[2], Recht et al. [1], and Candès and Tao [5] proved that,
under certain conditions, the rank minimization problem of
tensors could be well approximated by a convex optimization
problem.

There are many tensor completion methods, such as low-
rank tensor completion by tensor-nuclear-norm (TNN) [13]

[14], the simple low rank tensor completion (SiLRTC) al-
gorithm. All these methods need to frequently compute sin-
gular value decompositions (SVD) [15] [6], and they are
not competent for large-scale data since the cost of SVD is
very high (O(m2n + n3) for a m × n matrix). In order to
solve this problem, we propose a novel low-rank orthogonal
random projection method for tensor completion. Our method
can avoid the SVD operations, hence is extremely fast and
very suitable for large-scale data processing. There are many
methods also use the randomized algorithm to solve this
computational problems, such as [16], has propose a fast
and accurate approximation method method for SVT, [17]
has propose a fast and randomized tensor CP decomposition
algorithm based on sketching, and [18] has propose a MACH
and randomized tensor Tucker decomposition, but they do not
really avoid SVD operations.

The rest of the paper is organized as follows. Basic notation-
s, symbols, and some preliminaries are provided in section 2,
the formulation of tensor completion introduction in section
3, the new algorithm is detailed in section 4. Experimental
results are presented in section 5, and conclusions are made
in section 6.

II. NOTATION AND PRELIMINARIES

In this section, we provide the explanation of the notations
and introduce some tensor operations that appear in this paper.

A. Notation

Following [19], we use boldface lowercase letters to denote
the vectors, e.g., a, the boldface capital letters for matrices,
e.g., A, the Euler script letters for higher-order tensors, e.g.,
A, lowercase letters for scalars, e.g., a. The N -mode tensor is
denoted by A ∈ RI1×I2×···×IN , where Ij is the dimensionality
of j-th mode.

B. matricization for tensor

Unfolding or flattening a tensor is also known as ma-
tricization of a tensor. For a higher-order tensor X ∈
RI1×I2×···×IN , its n-th mode unfolding is denoted by Xn ∈
RIn×I1I2···In−1In+1···IN . Fig. 1 displays the n-mode unfolding
for a 3rd-order tensor with Kolda.
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Fig. 1. Matricization of a 3rd-order tensor

C. The n-mode product of tensor

A tensor X ∈ RI1×I2×···×IN multiply by a matrix An ∈
RJn×In can be expressed as X ×n An and its size is I1 ×
I2× · · · × In−1× Jn× In+1× · · · × IN . The elements of this
tensor can be written as follows:

(X ×n An)i1···in−1···jin+1···iN =

In∑
in=1

xi1i2···iNujin , (2)

where j = 1, . . . , Jn; ik = 1, . . . , Ik; k = 1, · · ·, N .

III. THE FORMULATION OF TENSOR COMPLETION

In this section, we introduce the low-rank and Tucker model
for the tensor completion.

A. Low-Rank model for Tensor Completion

Before introducing the model of tensor completion problem,
let’s review the low-rank matrix completion problem. As we
all known, the rank of the matrix is a general tool to capture
the global information [20], and the model of low-rank matrix
completion problem is as follows:

min
X

: rank(X),

s.t. : XΩ = MΩ,
(3)

where the X,M ∈ Rm×n, Ω is the set of the indices of the
observable elements of M, and the remaining elements of M
are missing. As the function rank(X) is a nonconvex. S. Ma
and D. Goldfarb have proposed that the rank(X) in (3) can
yields the nuclear norm minimization problem [21] as follows:

min
X

: ||X||∗

s.t. : XΩ = MΩ,
(4)

where || · ||∗ is trace norm. As the tensor is the generalization
of the matrix concept [7], so the tensor completion problem
can be denoted as follows:

min
X

: ||X ||∗

s.t. : XΩ =MΩ.
(5)

Unlike matrix, computing the rank of a tensor is a NP hard
problem [7] [22]. Therefore, problem (5) usually considered as
a low-rank tensor completion problem model. Problem (5) is
a convex optimization problem, but it should be solved by the
singular value computation of the tensor, and its computational
cost is very high, such as Tucker rank could be viewed as the
extension of matrix rank, and for a k dimension tensor X , we
have to implement k times SVD operation, which is relatively
computational cost, so it doesn’t suitable for large-scale or
higher-order data processing.

B. The Tucker model for Tensor Completion

In this subsection, we introduce a common heuristic model
of tensor completion, it is Tucker model [23] for tensor
factorization to the tensor completion [7] as follows:

min
X ,C,U1,··· ,Un

:
1

2
||X − C ×1 U1 ×2 U2 ×3 · · · ×n Un||2F

s.t. : XΩ = TΩ,
(6)

where C ×1 U1 ×2 U2 ×3 · · · ×n Un is the Tucker model
based tensor factorization, Ui ∈ RIi×ri , C ∈ Rr1×···×rn , and
T ,X ∈ RI1×···×In .

Tucker model is a good choice for when one only concerns
about the completion accuracy without caring about the u-
niqueness or interpretability of the decomposed latent factors
[24]. In this paper, we propose a novel orthogonal random
projection method for tensor completion based on Tucker
model, the details would be explained in the next section.

IV. ORTHOGONAL RANDOM PROJECTION FOR TENSOR
COMPLETION

A. The model of ORPTC

Based on (6), the tensor completion problem can be rewrit-
ten as follows:

min ||XΩ −MΩ||2F
s.t. rank(X(n)) ≤ R(n),

(7)

where X(n) is the n-mode unfolding of the X , and R(n) is the
multilinear rank of X [25].

X = G ×1 A(1) ×2 A(2) ×3 · · · ×N A(N), (8)

where A = [A(1),A(2), · · · ,A(N)] are the factors of X .
The problem (7) can be solved by the Alternating Least

Squares (ALS) method [19], wherein

G = X ×1 A(1)
T ×2 A(2)

T ×3 · · · ×N A(N)
T (9)

Detailed optimization procedure is presented in Algorithm 1.
Wherein m is the number of maximum iteration, and the ε is
convergence threshold.
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Fig. 2. Randomly selected 50 images with sampling rate of 0.7, after processing by TMac-inc, TMac-dec, SiLRTC and ORPTC, (a) comparison of the PSNR
of the recovered image, (b) comparison of the running time of the experiment.

Algorithm 1 Alternating Least Squares for Tucker factorization
approximation [19]

Input: X ∈ RI1×I2×···×IN , m, ε
Output: A(i), i = 1, 2, . . . , N ; G ∈ Rr1×r2×···×rN

Initialize: randomize Ai,G
1: repeat
2: For n ∈ [1,m]
3: Update A(1) ← SVD(unfold1(X ))
4: Update A(2) ← SVD(unfold2(X ))
5: . . . . . .
6: Update A(N) ← SVD(unfoldN (X ))
7: end for
8: until ||Xn −Xn−1||2F < ε, or n = m
9: Update G by (8)

10: Update X by (7)

B. Orthogonal Random Projection for Tensor Completion

Solving problem (7) is usually time-consuming due to
repeatedly computing the SVD of large unfolding matrices,
which may limit its further application in large scale problems.
In order to avoid the SVD operations, we propose a novel and
fast randomized based algorithm called Orthogonal Random
Projection for Tensor Completion (ORPTC). Before imple-
menting proposed method, the unknown elements of tensor
M are initialized with Gaussian distribution, this operation
could be denoted by X = full(M).

In problem (7), as we need to compute the factor matrix
A(i), so we should initialize the n-mode unfolding matrix at
first. The n-mode unfolding matrix is computed by

Xn = unfoldn(X ). (10)

In regular Tucker decomposition, to obtain the low rank
approximation of n-mode unfolding matrix Xn, QR de-
composition would be incorporated. In this case, in or-
der to obtain the left and right orthogonal basis matrix,
we firstly generate the random projection matrix Hn ∈
RI1I2...In−1In+1...IN×rn , rn ≪ In, and obtain the low rank
n-mode matrix as

C = XnHn, (11)

where C is the low rank randomized projection matrix. The
left orthogonal basis matrix could be obtained by QR algo-
rithm, e.g., Gram-Schmidt A = QR(C). Similarly, the right
orthogonal basis matrix is solved by V = QR(XT

nA). And
the core matrix could be computed as

M = ATXnV. (12)

Therefore, the completed n-mode matrix Xn could be updated
as

Xn = AMVT . (13)

The pseudocode of above ORPTC algorithm is presented
in Algorithm 2. The convergence conditions are ||Xn −
Xn−1||/||Xn|| < ε, and if the number of iterations reach to
the maximum which we set.

V. EXPERIMENTS

In this section, we compared the TMac-inc, TMac-dec,
SiLRTC and ORPTC methods using images recovering ex-
periments. In all experiments, we assume that the tensor
which we need to complete is M ∈ RI1×I2×···×IN with
rank r = (r1, r2, · · · , rN ), In this paper, our initial ranks
are [30,30,3] for the color images recovery. We set the stop
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(a)Original (b)Observation (c)TMac-inc (d)TMac-dec (e) SiLRTC (f)ORPTC

Fig. 3. (a) the original image, (b) image after sampling, and the sampling ratio is 0.7, (c) TMac-inc is mean Low-Rank Tensor Completion by Parallel
Matrix Factorization with rank-increasing strategy, (d) TMac-dec is mean Low-Rank Tensor Completion by Parallel Matrix Factorization with rank-decreasing
strategy, (e) SiLRTC is mean Simple low-Rank Tensor Completion, (f) ORPTC is mean Orthogonal Random Projection for Tensor Completion.

Algorithm 2 Orthogonal Random Projection for Tensor Completion
(ORPTC)

Input: M∈ RI1×I2×···×IN ; the observable elements’ indices
set Ω; m; ε
Output: G; X
Initialize: X 0 = full(M) ; Xmode = unfoldmode(X )

1: repeat n = 1, · · · ,m do
2: for mode=1,. . . ,N do
3: H ∈ Rm×n in i.i.d. N(0, 1)
4: C = XmodeH
5: A(mode) ← QR(C)
6: R = AT

(mode)Xmode

7: Vmode ← QR(RT )
8: Mmode ← AT

(mode)XmodeVmode

9: Update Xmode ← A(mode)MmodeV
T
mode

10: end for
11: until ||Xn

mode −Xn−1
mode||/||Xn

mode|| < ε or reach maxi-
mum iterations exhausted conditions

12: Gn ← Xn−1 ×1 A
T
(1) ×2 A

T
(2) ×3 · · · ×N AT

(N)

13: Xn ← Gn ×1 A(1) ×2 A(2) ×3 · · · ×N A(N)

condition as [6] for all the compared experiments methods as
follows:

||V k
1 − V k−1

1 ||
||V k−1

1 ||
,
||V k

2 − V k−1
2 ||

||V k−1
2 ||

, ......,
||V k

n − V k−1
n ||

||V k−1
n ||

< ε

(14)

and if the iterative number reach to the maximum number of
iterations. Here Vi is the i-th variable that we need to update,
k is the number of iteration, and ε is the threshold of the stop
criteria, we set ε = 10−3 in this paper, and the maximum
number of the iteration is 150. The experiments were carried
out in MATLAB 2016b, on a server equipped with two E5-
264014, 128G of RAM.

A. Real Data Experiments

We evaluate our method with color images recovery, as the
color image has three channels, red, green, and blue channels,
an image forms as a 3-way tensor. In order to evaluate the
image recovery quality of TMac-inc, TMac-dec, SiLRTC and
ORPTC method, we employ the peak signal-to-noise ratio
(PSNR) [6] defined as

PSNR = 10log10(
I1I2I3||M||2∞
||X̂ −M||2F

), (15)

where X̂ is the recovered tensor of M∈ RI1×I2×I3 , ||M||∞
means the absolute value maximum of the M, ||X ||F is the
Frobenius norm of X . Besides PSNR, the computational time
is also very important criterion, so we also use the running
time to compare their computational cost.

In this experiment, all the color images are from Berkeley
Segmentation database [26]. There are 200 color images in
the database, each size is 321 × 481 × 3. We select 50 color
images from those database randomly, and set the sampling
ratio p = 0.7, which means 70% pixel values are known, and
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30% pixel values are set to zero. As [6], we set the initial
rank of TMac with rank-decreasing strategy are [30,30,30],
and the initialized rank of TMac with rank-increasing strategy
are [3,3,3], and the parameter α = [1, 1, 1] and β = [1, 1, 1]
for SiLRTC. In Fig. 2, we report the PSNR values and running
time for the 50 color images which after testing by those
methods.

TABLE I
PSNR AND RUNNING TIME (SECONDS) USING THE ABOVE FIVE IMAGES

Image TMac-inc TMac-dec SiLRTC ORPTC
PSNR time PSNR time PSNR time PSNR time

1 28.07 17.75 25.53 6.02 17.49 8.68 32.77 4.94
2 24.74 18.75 18.01 6.07 12.35 8.55 27.23 4.59
3 31.05 15.30 24.54 6.03 14.59 8.79 34.00 4.72
4 27.44 12.58 22.49 6.08 12.80 8.76 31.19 4.62
5 30.44 19.59 24.90 5.99 12.41 8.90 35.45 4.59

We show the inpainting result of five of images tested in
Fig. 3 and table 1. We can see that ORPTC performs the best.
Our method not only is the fastest , but also has the highest
PSNR in those experiments.

VI. CONCLUSIONS

In this paper, we employ the model of Tucker decomposition
to reconstruct the tensor which is including unknown elements.
We use the orthogonal random projection method instead of
singular value decomposition to compute the factor matrices.
ORPTC greatly cut down the time that required for tensor
completion, hence it is very suitable for large-scale problems.
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