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Abstract—This paper proposes a simple message passing detec-
tor with QR-decomposition for multi-input multi-output (MIMO)
systems. Our message passing algorithm exploits the structure of
QR-decomposed received signals and achieves optimum maxi-
mum likelihood (ML) detection with less complexity. Computer
simulations confirm the superior performance of our proposed
approach to conventional message passing techniques such as
belief propagation (BP).

I. INTRODUCTION

To deal with the recent exponential growth of wireless data
traffic, multi-input multi-output (MIMO) systems have gained
much attention from not only academia but also industry.
Its high spectral efficiency is achieved by simultaneously
transmitting multiple independent signals, i.e., streams, from
multiple antennas. This simultaneous transmission however
causes strong interference between streams at the receiver side,
and the receiver has to treat this interference to detect the data.

Maximum likelihood detection (MLD) is known as an op-
timal detection technique while its computational complexity
is exponentially high. To reduce the complexity, linear spatial
filter based on zero-forcing (ZF) or minimum mean square
error (MMSE) is an attractive alternative. Although these
spatial filters significantly reduce the receiver complexity, their
detection performance is even worse than MLD especially
when the number of streams becomes large. Moreover, if
powerful error-correcting codes approaching to the channel
capacity such as low-density parity check (LDPC) codes or
turbo codes are utilized in transmission, their channel decoders
require soft-outputs of the detector, i.e., marginal probabilities,
while these spatial filters cannot output such soft information
basically.

Belief propagation (BP) is a practical and powerful method
to calculate marginal probabilities; this efficient calculation is
performed via a parallel computation called message passing
on a factor graph composed of variable and factor (obser-
vation) nodes [1]. In BP algorithm, messages (beliefs) are
iteratively sent from one node to its neighboring nodes. These
beliefs become identical to exact marginal probabilities if and
only if the graph is a tree. Nevertheless, BP algorithm exhibits
good approximation results of marginal probabilities even if
the graph has cycles [2].

BP-based detection for MIMO systems has been studied
in [3] where factor graphs are defined by channel matrices
between transmitting and receiving antennas. Corresponding

graphs are always fully-connected, namely complete graphs,
since signals transmitted from one antenna arrive at all receiv-
ing antennas. Thus, the performance of BP-based detection is
remarkably degraded compared with MLD in terms of bit error
rate (BER) [4] when the number of antennas is not so large.
To overcome this loopy graph problem, QR-decomposed BP
has been proposed in [5]. After QR-decomposition, the graph
has less number of cycles, and this transformation leads to
the better convergence of BP while the BER performance is
still worse than MLD. As another approach, QR-decomposed
generalized belief propagation (GBP) for MIMO systems has
been proposed in [6]. Using a region graph instead of the
factor graph after QR-decomposition, QR-GBP can achieve
the near-optimal performance close to MLD. However its com-
putational complexity increases exponentially as the number
of antennas and modulation level increase. Thus, a complexity
reduction technique for QR-GBP has been studied in [7]. Also,
it is worth noting that the paper also proposed the log-domain
calculation of GBP algorithm so as to make it computationally
stable.

In this paper, we propose a simple message passing (SMP)
detector for MIMO systems. This detector is also based
on QR-decomposition and exploits the structure of QR-
decomposed received signals. Numerical results confirm that
our proposed detector achieves the identical performance to
MLD while its complexity is even less than MLD.

II. SYSTEM MODEL

Let us consider a MIMO system with Nt transmitting and
Nr receiving antennas as illustrated in Fig. 1. Throughout the
paper, we assume a spatial multiplexing system; each antenna
transmits an independent stream. Let x = [x1, x2, . . . , xNt ]

T

denote a transmitted real signal vector, and H denote a real
channel matrix whose i-th row and j-th column element hij

is an independent and identically distributed (i.i.d.) Gaussian
random variable with zero mean and half variance, where (·)T
denotes the transpose of vector or matrix. Without loss of
generality, we assume that binary phase shift keying (BPSK)
is used as a modulation. The channel matrix H is assumed to
be ideally available only at the receiver side. Then, a received
real signal vector y = [y1, y2, . . . , yNr ]

T can be written by

y = Hx+ z, (1)
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Fig. 1. System model with Nt transmitting and Nr receiving antennas.

where z = [z1, z2, . . . , zNr ]
T is a noise vector whose elements

are i.i.d. Gaussian random variables with zero mean and
variance N0/2.

III. SIMPLE MESSAGE PASSING ALGORITHM AND
GENERALIZED BELIEF PROPAGATION

A. Simple Message Passing Algorithm

A major idea of our proposed SMP algorithm is to reduce
the number of variables in marginalization. SMP algorithm is
performed on the graph named regional graph1. This graph is
constructed from the factor graph defined by MIMO channel
matrix. In the following, we explain how to construct this
regional graph.

Applying QR-decomposition to the channel matrix H, (1)
can be rewritten as

y = QRx+ z, (2)

where Q is a unitary matrix and R is an upper triangular
matrix. Multiplying QT from left, (2) can be rewritten as

ỹ = Rx+ z̃, (3)

where ỹ = QTy = [ỹ1, ỹ2, . . . , ỹNr ]
T, and z̃ = QTz =

[z̃1, z̃2, . . . , z̃Nr ]
T is i.i.d. Gaussian random variables with

zero mean and variance N0/2. In the rest of the paper,
(Nt, Nr) = (4, 4) is assumed for ease of explanation. Then,
QR-decomposed factor graph can be represented as Fig. 2.

A region is defined as follows. A region of a factor graph is
a set of variable and observation nodes. A single observation
node and all the neighboring variable nodes must be in
each region. From Fig. 2, four regions A, B, C, and D can
be obtained. Then, those regions are connected by arrows
according to a following rule; a region with k variable nodes
must be a tail of an arrow and a region with (k − 1) variable
nodes must be a head of an arrow where k = 2, . . . , Nt. Then,
the regional graph corresponding to the factor graph in Fig. 2
can be illustrated as Fig. 3. In this case, region A is a parent

1Note that our regional graph is different from region graph proposed in
[2].

Fig. 2. QR-decomposed factor graph with (Nt, Nr) = (4, 4).

Fig. 3. Degenerated region graph for SMP algorithm with (Nt, Nr) = (4, 4).

region of region B, region B is a parent region of region C,
and region C is a parent region of region D.

Based on this regional graph, messages are calculated and
passed along arrows. A message from region P to region R is
given by

mP→R(xR) =
∑

xP\xR

p(ỹP|xP)mP′→P(xP) (4)

where xR and xP are all the variables in the region R and
region P respectively, xP\xR is a single variable in region P
but not in R, and P′ is parent region of P.

In SMP, these messages must be calculated from the largest
region to the smallest region. For example, a message from A
to B is calculated at first. Namely,

mA→B(x2, x3, x4) =
∑
x1

p(ỹ1|x1, x2, x3, x4). (5)

In this equation, any messages are not used since re-
gion A does not have a parent region. Subsequently,
mA→B(x2, x3, x4) is calculated as

mB→C(x3, x4) =
∑
x2

p(ỹ2|x2, x3, x4)mA→B(x2, x3, x4).

(6)
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Finally, the message mC→D(x4) is calculated as

mC→D(x4) =
∑
x3

p(ỹ3|x3, x4)mB→C(x3, x4). (7)

Using these messages, every transmitted symbol is succes-
sively decided. An estimate of transmitted signal xi, i =
1, 2, . . . , Nt, is given by

x̂i = arg max
xi∈{±1}

[p(ỹi|xi, x̂i+1 . . . x̂Nt)mI′→I(xi, x̂i+1 . . . x̂Nt)] ,

(8)

where region I is the region with xi, . . . , xNt , and I′ is the
parent region of region I. As obvious in (8), in order to decide
xi, estimates x̂i+1 . . . x̂Nt from children are necessary. This is
the reason why we have to start the decision from xNt . Then
all the estimated values are respectively given by

x̂4 = arg max
x4∈{±1}

[p(ỹ4|x4)mC→D(x4)] , (9)

x̂3 = arg max
x3∈{±1}

[p(ỹ3|x3, x̂4)mB→C(x3, x̂4)] , (10)

x̂2 = arg max
x2∈{±1}

[p(ỹ2|x2, x̂3, x̂4)mA→B(x2, x̂3, x̂4)] , (11)

x̂1 = arg max
x1∈{±1}

[p(ỹ1|x1, x̂2, x̂3, x̂4)] . (12)

As obvious from above equations, SMP is identical with
standard MLD while its complexity is less than MLD because
of successive decisions of transmitted signals.

B. Interpretation of SMP as Generalized Belief Propagation
in Degenerated Region Graph

In this section, we further describe that our proposal SMP
algorithm can be interpreted as parent-to-child (PtC) algorithm
on degenerated but still valid region graph. PtC algorithm is
performed on a graph called region graph [2]. Different from
regional graph representation, region graph has two different
regions: largest regions and child regions. Each largest region
includes a single observation node and neighboring variable
nodes while child regions consist of common variable nodes of
their parent regions. In the following, if there exists a directed
path from region va to vd, we say that va is an ancestor of
vd and vd is a descendant of va. Let us define the counting
number cv for every region v as

cv = 1−
∑

R∈A(v) cR, (13)

where A(v) is the set of regions that are ancestors of region
v. When the counting number meets the following region
graph condition:

∑
R cR = 1, the region graph is valid. If

this condition does not hold, the accuracy of PtC algorithm is
not guaranteed. Note that the construction of region graphs is
not unique, and different region graphs would lead to different
message passing algorithm and performance.

Fig. 4. Example of original region graph for PtC algorithm with (Nt, Nr) =
(4, 4).

1) Parent-to-Child Algorithm: In PtC algorithm, each re-
gion R has a belief bR(xR) given by

bR(xR) ∝p(ỹR|xR)

 ∏
P∈P(R)

mP→R(xR)


 ∏

D∈D(R)

∏
P′∈P(D)\ε(R)

mP′→D(xD)

 , (14)

where mP→R(xR) is a message passed from region P to
region R with transmitted signals included in region R which
are denoted by xR. Also, P(R) is a set of regions which are
parents of region R, and D(R) is a set of all regions that are
descendants of region R. ε(R) ≡ R ∪ D(R) is a set of all
regions that are descendants of R and also R itself.

Also, the message-update rule in GBP algorithm is given
by

m′
P→R(xR)

:=
∑

xP\xR

p(ỹP|xP)

∏
(I,J)∈N(P,R) mI→J(xJ)∏
(I,J)∈D(P,R) mI→J(xJ)

, (15)

where N(P,R) is the set of all connected pairs of region (I, J)
such that J is in ε(P) but not in ε(R) while I is not in ε(P).
D(P,R) is the set of all connected pairs of regions (I, J) such
that J is in ε(R) while I is in D(P) but not in ε(R). After the
sufficient number of message updates, beliefs of the smallest
regions are used for the decision.

2) GBP on Degenerated Region Graph: Figure 4 shows the
valid region graph constructed from the factor graph in Fig. 2.
This region graph contains cycles, and thus the performance
of PtC algorithm does not achieve the optimum performance
of MLD [2]. Eliminating some arrows and regions, we obtain
degenerated region graph without cycles as shown in Fig. 5.
Note that this graph is still valid.
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Fig. 5. Example of degenerated but valid region graph for parent-to-child
algorithm with (Nt, Nr) = (4, 4).

Applying PtC algorithm to this degenerated but valid graph,
corresponding messages are given by

m′
A→E(x2, x3, x4) =

∑
x1

p(ỹ1|x1, x2, x3, x4), (16)

m′
B→F(x3, x4) =

∑
x2

p(ỹ2|x2, x3, x4)mA→E(x2, x3, x4),

(17)

m′
C→G(x4) =

∑
x3

p(ỹ3|x3, x4)mB→F(x3, x4). (18)

These messages are calculated by (5)–(7). Then the rest of
messages are also calculated by

m′
D→G(x4) = p(ỹ4|x4), (19)

m′
C→F(x3, x4) = p(ỹ3|x3, x4)mD→G(x4) (20)

= p(ỹ3, ỹ4|x3, x4),

m′
B→E(x2, x3, x4) = p(ỹ2|x2, x3, x4)mC→F(x3, x4) (21)

= p(ỹ2, ỹ3, ỹ4|x2, x3, x4).

Then, beliefs of region E, F, G are respectively given by

bG(x4) = m′
C→G(x4)m

′
D→G(x4) (22)

= m′
C→G(x4)p(ỹ4|x4).

bF (x3, x4) = m′
B→F(x3, x4)m

′
C→F(x3, x4) (23)

= m′
B→F(x3, x4)p(ỹ3, ỹ4|x3, x4),

bE(x2, x3, x4) = m′
A→E(x2, x3, x4)m

′
B→E(x2, x3, x4) (24)

= m′
A→E(x2, x3, x4)p(ỹ2, ỹ3, ỹ4|x2, x3, x4),

These messages are identical to the right hand side of (9)–(11).
Finally, estimates of PtC algorithm are respectively given

by

x̂4 = arg max
x4∈{±1}

[bG(x4)] , (25)

x̂3 = arg max
x3∈{±1}

[bF (x3, x̂4)] , (26)

x̂2 = arg max
x2∈{±1}

[bE(x2, x̂3, x̂4)] , (27)

x̂1 = arg max
x1∈{±1}

[p(ỹ1|x1, x̂2, x̂3, x̂4)] . (28)

Equations (12) and (28) are identical, and the other equa-
tions are almost same. The difference between corresponding
equations is the number of observation nodes used for the
decision. Namely, PtC algorithm utilizes more observations.
For example, to estimate transmitted signal x2, PtC algorithm
uses all the observation nodes. However x2 is not received at
ỹ3 and ỹ4. Therefore, ỹ3 and ỹ4 are not necessary to estimate
x2, and that is the reason why SMP algorithm only uses ỹ1
and ỹ2.

Summarizing above discussions, PtC algorithm propagates
all the observation values, but SMP algorithm propagates
only indispensable messages. This leads to the complexity
reduction. Moreover, as described above, SMP algorithm is
identical to MLD, and thus PtC algorithm on degenerated but
valid graph shown in Fig. 5 provides the better performance
than one on the original graph shown in Fig. 4. This interesting
observation suggests that eliminating cycles in given graph
may result in better convergence (performance) when message
passing algorithm based on free energy approximation is used
[2].

IV. NUMERICAL RESULTS

Finally, we evaluate the BER performance of proposed
SMP detection and its computational complexity via computer
simulations.

Figure 6 shows the BER performances of BP [3], QR-
decomposed BP (QR-BP) [5], PtC algorithm [2] on original
region graphs, PtC on degenerated region graphs, our proposed
SMP, and MLD when the number of both Nt and Nr is
assumed to be 8. The number of iterations of BP and QR-
BP is assumed to be 15. The number of iteration of GBP with
PtC algorithm is assumed to be 7. Moreover, numerically-
optimized damping is used for BP and QR-BP. As observed
from the figure, our proposed SMP achieves the identical
performance to MLD while BP and QR-BP exhibit large gap
from the MLD. PtC algorithm on the degenerated graph also
achieves the same performance while PtC algorithm on the
original graph exhibits a gap from the MLD.

Figure 7 shows complexity comparison of BP, QR-BP, PtC
algorithm on degenerated but valid region graph, proposed
SMP detection, and MLD in terms of the number of multi-
plications. Vertical axis shows the number of multiplication
and horizontal axis shows the number of antennas where
Nt = Nr is assumed. Clearly, SMP algorithm requires even
less complexity than the other algorithms especially when the
number of antennas becomes large.

From these observations, we can conclude that SMP algo-
rithm can achieve the optimal performance with even lower
complexity than PtC algorithm and MLD.
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Fig. 6. BER performances of conventional BP with damping, QR-decomposed
BP with damping , PtC algorithm on original region graph, PtC algorithm on
degenerated but valid region graph, proposed SMP detection, and MLD where
(Nt, Nr) = (8, 8).

Fig. 7. Complexity comparison of conventional BP, QR-BP, PtC algorithm on
degenerated but valid graph, proposed SMP detection, and MLD.

V. CONCLUSION

In this paper, we have proposed SMP detection. SMP
detection achieves the MLD performance while the complexity
is even less than the MLD.
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