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Abstract—Gaussian belief propagation (GaBP) has been pro-
posed to detect a large number of signals. It is based on message
passing of the second-order complexity. In general, the GaBP
uses bit-wise reliability. Thus, it is not straightforward to apply
the GaBP to the multi-level-modulated signals. In this paper, we
propose to compose a 16-QAM symbol from two QPSK symbols
using superposition modulation and evaluate the detection perfor-
mance of the GaBP for superposed 16-QAM signals in a massive
MIMO system. In the uncoded case, the uniform and Gray-
mapped 16-QAM provides the best performance. However, in
the coded case, the performance of superposed 16-QAM becomes
much better and outperforms the uniform and Gray-mapped 16-
QAM. Thus, the potential capability of superposition modulation
in the GaBP detection has been confirmed.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) transmission is a
useful technique to improve the channel capacity almost
in proportion to the number of transmit or receive an-
tennas, whichever is smaller [1]. In recent years, massive
MIMO systems have been extensively studied to accommodate
exponentially-increasing traffic [2], [3]. The massive MIMO
means to have 100 or more antenna elements at the base
station. At present, the total number of antennas of multiple
user terminals is much less than 100. But, in coming the IoT
era, massive uplink access will be common.

Detecting the massive signals requires very complex calcu-
lations. For example, the complexity of linear spatial filtering
is O(M?3) where M is the number of transmitted signals.
Thus, a signal detection technique called as Gaussian belief
propagation (GaBP) has attracted attention recently [4]-[6].
The GaBP expresses the problem as a factor graph and
estimates the transmitted signals by iteratively exchanging the
reliability information between the variable and factor nodes.
The marginalization of conditional probabilities is eliminated
by Gaussian approximation for the interference signals. Thus,
the complexity of O(M?) is achieved.

Applying the GaBP to detecting multi-level-modulated sig-
nals is not so simple. A use of bit-wise reliability needs
marginalization [7]. So, a use of symbol-wise reliability has
been proposed [8]. In this paper, we propose an alternative
approach based on superposition modulation [9]. The super-
position modulation can decompose a multi-level-modulated
signal into primitive elements. For example, a 16-QAM sym-
bol is composed of two QPSK symbols which are suitable to
be detected by GaBP. In compensation for such decomposition,
however, the number of symbols to be detected is doubled.
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Fig. 1. Examples of 16-QAM constellations. (a) Uniform and Gray mapping,
(b) nonuniform mapping using superposed modulation.

Then, overall performance may be degraded. So, we evaluate
the detection performance using GaBP for superposed 16-
QAM signals in a massive MIMO system and discuss the
availability of superposition modulation.

II. MIMO SYSTEM WITH SUPERPOSED 16-QAM

Consider a MIMO system having M transmit-antennas and
N receive-antennas. We assume a spatial multiplexing scheme
where independent signals are transmitted from each antenna
element. Specifically, we also assume that all signals are
modulated using 16-QAM.

Fig. 1 shows examples of 16-QAM constellations. The
uniform signal constellation as in Fig. 1(a) is commonly used.
The minimum Euclidean distance becomes 1/2/5 at any row
and column when the symbol energy is set to one. Gray
mapping is generally used so that each adjacent symbol differs
in one bit.

As an alternative way to generate 16-QAM symbols, we
apply superposition modulation [9]. Then, a 16-QAM symbol
is expressed by superposition of two QPSK-signals as in
Fig. 1(b). It can be formulated as

xsp:\/ia$1+\/§bx27 1)

where z, is a 16-QAM symbol superposition-modulated.
and x5 are QPSK symbols having a constellation in Fig. 2.
a and b are the lengths shown in Fig. 1(b). By adjusting the
parameters a and b, we can generate either uniform or non-
uniform constellation. Note that the superposition modulation
is incompatible with Gray mapping. Thus, there are some cases
where adjacent constellation points differ by two bits.
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Fig. 2. A QPSK constellation where the symbol energy is set to one.

In order to maintain the symbol energy of x, as one under
the condition that |z1|? and |z2|? are one, we have

2a% 4+ 20° = 1. )

Without loss of generality, we can assume ¢ > b > 0.
Then, an inequality \/1/2 > a > 1/2 > b > 0 holds'.
In this paper, we use this superposed 16-QAM symbols for
transmit signals. Specifically, a sum of two QPSK symbols
ﬂaxgj_l + ﬂb@j is transmitted from the jth transmit
antenna.

Let h; ; be the channel between the jth transmit antenna
and ith receive antenna where 1 < 7 < M and 1 < i < N.
Then, the ith received signal is given by

M
Yi = Zhi,j (\@aqu + ﬂbej) IVM+ 2z, (3
j=1

where z; is a complex Gaussian noise with zero mean and
variance 2. 1/v/M is the coefficient for setting the total
transmit power as one.

By replacing \/2/M h; ja = hj5; ; and \/2/M h; ;b =
h;’Qj, we can rewrite (3) as
2M
yi = Zh;j T+ 2. 4)
j=1
This is expressed as a vector-matrix from as
y=Hx+z, 5)
where x = [v1,...,m2m]|T. y = [y,.-,un]T, 2 =
[21,..., z2n]7, and
hlyla

hi1b hima  hi b

H: M : . .. . . (6)

hyia hyib hn.ma hy b
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'When a = b = 1/2, 7 signal points disappear in the constellation due to
degeneration.
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Fig. 3. A factor graph representation for superposed 16-QAM signal detection.

Equations (5) and (7) indicate that a problem detecting M
16-QAM signals is converted into one detecting 2M QPSK
signals. Therefore, the detection procedure using GaBP is
simplified as will be described below.

1II. DETECTION METHOD BASED ON GABP
A. Factor Graph

Fig. 3 shows a factor graph corresponding to (5) and
(7) where the variable nodes or message nodes contain the
transmitted bit information and the factor nodes or observation
nodes contain the received signals. Four bits, i.e., two QPSK
signals are mapped per transmit antenna by superposition
modulation. Thus, the number of message nodes becomes 4 M
whereas the number of observation nodes is /N. Note that the
strength of the edges connected to the jth transmit antenna is

defined as \/2/M h; ja or \/2/M h; ;b for 1 <i < N.

B. Processing at Observation Nodes

In the GaBP, soft cancellation is performed at the obser-
vation nodes. Log-likelihood ratio (LLR) values passed from
the message nodes are used as extrinsic values to generate
soft replicas according to the modulation scheme and mapping
function. In the paper, we use a QPSK constellation in Fig. 2.
Thus, the jth transmit-symbol replica at the ith observation
node is given by

NO) 1 55?—1
Re{#;"} = 7 tanh 3 (8)

0)
Im{z\"} = % {tanh (5;3) } , )

where /82‘-)71 and Bg;) are the LLR values passed from the
jth observation node as will be described later. Obviously,
the real and imaginary parts of 3?;;” are mutually independent.
Note that no LLR values are available at the first iteration.
Thus, soft replicas become all zero because the initial values
of all extrinsic values are set to zero.
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After the replicas are obtained, the soft cancellation is
performed at the ¢th observation node as

' oM
:ljz(]) =y — Z hé,ji§’>~

q=1,q#j

10)

Each bit’s LLR value is calculated using this signal as [10]

Re{gy” « hir;}
ag) 1_2\/7*] (11)

Ue

Im () % h*.
z) _ 2[ {y z,]}’

(i

12)

where o2 is the equivalent noise power which is a sum of
the noise power o2 and the residual interference power o2

included in 5. o2 is obtained by

2M
D DR o (T I I CE)
m=1,m#j

The LLR value a( RET passed back to the kth message node.

C. Processing at Message Node

At the message nodes, first, a posteriori LLR values are
calculated using LLR values passed from the observation
nodes. Particularly, the a posteriori LLR value at the kth
message node is given by

N
e = Z a,gn)~
n=1

When channel coding is applied, this a posteriori LLR value
is passed to a decoder and is replaced by the decoded output.

The extrinsic value passed to the ith observation node is
obtained by subtracting the LLR value from the ith observation
node to avoid the self information propagation and thus can
be expressed as

(14)

(Z) (@)

=Y — . (15)

D. Iterative Processing

In the GaBP method, the reliability information expressed
as the LLR values is exchanged between the observation and
message nodes iteratively and thus the reliability is gradu-
ally improved. In this paper, after repeating a predetermined
number of updates, the transmitted bits are judged from the a
posteriori LLR values at the message node.

E. Node Selection

It is known that an error-tolerance is different among the
bits in any m-QAM symbol regardless of constellation types,
i.e., uniform or non-uniform mapping. For example, in the
superposed 16-QAM case, x; is error-tolerant than xo when
a > b in (1). Thus, the first and the second bits, defined as
upper bits, in Fig. 1(b) are expected to have a lower BER
compared with the third and fourth bits, defined as lower bits.
Node selection is a technique updating the LLR values serially
from nodes having higher error resistance [11]. In the case of
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Fig. 4. Staggered update with node selection where error-tolerant nodes are
updated first.

TABLE 1
SIMULATION PARAMETERS.

100 x 100
Superposed 16-QAM

Block Rayleigh fading
(perfectly known at the receiver)

Number of antennas (M x N)
Modulation method

Channel statistics

Noise White Gaussian noise

Block length

1 symbol duration
(200 QPSK symbols)

1000 blocks

15 (without node selection)
30 (with node selection)

Number of ransmitted blocks

Maximum iteration number

Channel encoder (7, 5) convolutional code

(constraint length 3, coding rate 1/2)
Max-log-MAP decoder
0<b<1/2

Channel decoder

Superposition coefficient range

Fig. 1, the error-tolerance has two levels. So, we apply the
node selection as shown in Fig. 4 where indices ¢ mod 4 = 1
and 2 correspond to the upper bits.

IV. DETECTION PERFORMANCE
A. Simulation Environment

Table I shows typical parameters used in the following
simulations. We use superposed 16-QAM as described above.
The numbers of transmit and receive antenna elements are 100
each. The channel response between each pair of transmit and
receive antennas is modeled by uncorrelated block Rayleigh
fading, and it is assumed to be known perfectly at the receiver
side. 1000 blocks are transmitted for BER evaluation where
each block size is one symbol duration, i.e., 200 QPSK
symbols.

In coded cases, a (7, 5) convolutional code of constraint
length 3 and coding rate 1/2 is used. The maximum iteration
number in the GaBP method is set to 15 and 30, with or with-
out node selection, respectively. The superposition coefficients
are changed within the range of 0 < b < 1/2. The uniform
constellation is achieved by setting b = 1/1/10 ~ 0.316.

B. Uncoded Case

Fig. 5 shows the BER performances for the average SNR of
10, 20, and 30 dB in the uncoded case where the superposition
coefficient b is changed from 0 to 0.5. “NS” in the legend
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Fig. 5. BER performance versus superposition coefficient b in uncoded case.

means “node selection”. All the dotted curves overlap each

other. It is clearly indicated that the node selection improves
detection performance dramatically. Therefore, in the later
evaluation, we use the node selection as an essential technique.
Although the optimum b depends on the SNR, an appropriate
range for b should be from 0.1 to 0.2.

The BER performance versus the SNR is shown in Fig. 6 for
b=10.1,0.15, and 0.2, where a for each b becomes 0.70, 0.691,
and 0.678, respectively. For comparison, we also evaluated the
BER performance of uniform and Gray-mapped 16-QAM [7].
The uniform 16-QAM case provides the best performance
because of the larger minimum Euclidean distance and Gray-
mapping. Although the cliff position for the superposed cases

is worse than one for the uniform case, the error floor becomes
lower with decrease of b.

C. Comparison Between Upper and Lower Bits

Let us check the error tolerance of the upper and lower bits
in the superposed cases using the BER performance shown in
Fig. 7, where b = 0.1, 0.15, and 0.2. It is quite reasonable that
the BER of the upper bits becomes lower as b decreases (i.e.,
a increases). Although the BER of the lower bits decreases
with increase of b, an error floor is observed for b = 0.2.
It is supposed that degradation in the detection quality of
upper bits strongly affect the detection performance of lower
bits. b = 0.1 or 0.15 is much less than the corresponding
separation in the uniform mapping, and hence the BER cliff
becomes worse in such case as in Fig. 6. At present, we
conclude that the superposed 16-QAM is not the optimum for
uncoded situations. However, it might be possible to improve

the detection performance by applying error protection into
lower bits.
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Fig. 6. BER performance versus SNR for superposition coefficient of b =
0.10, 0.15, and 0.20 in uncoded case with node selection.
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Fig. 7. BER performance of upper and lower bits in uncoded case with node
selection.

D. Coded Case

Finally, we show the BER performance in the coded case
as in Fig. 8, where b is set to 0.08, 0.10, 0.12 which are
chosen empirically based on a BER test as in Fig. 5. The
coefficient a for each b is 0.703, 0.70, and 0.697, respectively.
Then, the constellation becomes quite non-uniform. The a
posteriori LLR values at the decoder output become much
higher than those in the uncoded case. In fact, outliers of the
LLR value are observed more frequently in the case of uniform
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Fig. 8. BER performance for b = 0.08, 0.10, and 0.12 in coded case with
node selection.

and Gray mapping, and hence an BER floor can be seen in high
SNR region. It is clearly shown that the superposed 16-QAM
outperforms the uniform and Gray-mapped 16-QAM for any
b unlike the uncoded case. This performance improvement is
definitely given by all of error correction, non-Gray mapping,
and unequal error tolerance. It is highly expected that further
optimization for these parameters may provide much better
performance.

V. CONCLUSIONS

GaBP based signal detection is an easy and powerful
tool for massive MIMO system. However, for higher level
modulations, we need additional techniques to obtain a rea-
sonable performance. In this paper, we have proposed using a
superposed 16-QAM instead of the uniform and Gray-mapped
16-QAM. Then, the problem detecting M 16-QAM signals
is replaced by one detecting 2M QPSK signals. The use of
superposed 16-QAM makes the problem structure simpler but
scales up to double size. In addition, Gray-mapping cannot
be applied. The numerical analysis showed that the detection
performance was dramatically degraded when no channel code
is used. However, the superposition modulation makes it easy
to control the error tolerance of each bit. Thus, applying the
node selection which utilizes the difference in error tolerance
among the nodes in the factor graph, we could reduce the
degradation to about 2.5 dB from the curve for the uniform and
Gray-mapped 16-QAM case at the BER of 1072, Especially,
in the coded case, a better performance was obtained by
superposition modulation. The parameter setting in this paper
is still not optimized yet. Thus, there might be a possibility
to improve the detection performance further. More detailed
discussion is an urgent issue. On the other hands, the use of
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superposition modulation often induces the overloaded MIMO
situations. Therefore, another approach which is suitable to
overloaded MIMO detection such as [12] instead of GaBP
might be a better choice.
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