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Abstract—The high performance video quality assessment
(VQA) algorithm is a necessary skill to provide high quality video
to viewers. However, since the nonlinear perception function
between the distortion level of the video and the subjective
quality score is not precisely defined, there are many limitations
in accurately predicting the quality of the video. In this paper, we
propose a deep learning scheme named Deep Blind Video Quality
Assessment to achieve a more accurate and reliable video quality
predictor by considering various spatial and temporal cues which
have not been considered before. We used CNN to extract the
spatial cues of each video in VQA and proposed new hand-crafted
features for temporal cues. Performance experiments show that
performance is better than other state-of-the-art no-reference
(NR) VQA models and the introduction of hand-crafted temporal
features is very efficient in VQA.

I. INTRODUCTION

As the popularity of mobile devices and the demand for
video streaming services increase, video services are per-
formed in various dynamic network environments. Therefore,
the final quality enjoyed by the viewer is different according to
the channel environment even for the same contents [1][2]. To
accurately evaluate the difference, there is a need to measure
the quality of the video that the viewer perceives.

However, to date, most quality assessment (QA) studies
have focused on image quality assessment (IQA). Recent IQA
studies [3]-[7] have resulted in higher performance improve-
ments compared to earlier studies [8]. In particular, J. Kim et.
al. [9] achieved state-of-the-art performance in IQA through
deep neural networks. In [9], it can be seen that various spatial
cues such as saliency region, high / low spatial frequency, and
natural scene statistics (NSS) are extracted through feature
map visualization

On the other hand, due to the difficulty of analyzing
visual characteristics, video has difficulty modeling nonlinear
perception behaviors with a specific function different from
image, and VQA method [10][11] is far below the IQA model.
In conclusion, VQA has the lowest performance in QA field
and VQA using only distorted video without reference one is
a very challenging task.

In order to overcome the above-mentioned problems of
making VQA difficult and the limits of existing VQA re-
search, we proposed a new framework of no-reference (NR)
VQA algorithm named deep blind video quality assessment
(DeepVBQA). We use convolutional neural network (CNN)

Fig. 1. Overall framework of DeepVQA.

to improve the performance of NR VQA considering various
temporal cues that were not considered in previous studies.
We use pre-trained CNN model to extract various features.
This introduces the concept of transfer learning, which is
advantageous in that the number of training data does not
cause overfitting. When the application of the model used
in the transfer learning is similar to the original task, the
performance of the original task increases. Therefore, NR IQA
algorithm [9] similar to original task VQA was used as a
model for transfer learning. However, image and video have
obvious differences such as frame. Therefore, we extracted
the features more suitable for VQA through fine-tuning in the
model training process.

Additional hand-crafted features were used to reduce CNN
model complexity. The reason for the increasing depth of CNN
model in computer vision field is to extract high level features
in the feature extraction process. However, since the features
that affect video quality in QA field have been clarified through
previous studies, it is possible to add the features in a hand-
crafted way so that the deep learning model reduces the efforts
to extract existing features. In addition, various temporal cues
were considered by introducing new features revealed through
experiments.

The remainder of this paper is organized as follows. Section
II discusses how to extract spatial features and temporal
features at the frame level. And Section III describes a feature
vector learning process that regresses to a final subjective
quality score through a feature aggregation process. Section
IV demonstrates the superiority of the proposed model through
various experiments. Conclusions and future work are dis-
cussed in Section V.

1513

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018



( )g
θ
•

( )g
θ
•

Fig. 2. Framework of extracting spatial features. Spatial features of video
frame patches are extracted local feature extraction gθ(·) in [9].

II. FRAME FEATURE EXTRACTION

In the feature aggregation stage, a set of frame-level features
extracted from the distorted video is combined into a video
feature. Finally, at the regression stage, the video feature is
trained to predict the subjective score. The proposed Deep-
BVQA is shown in Fig. 1.

A. Spatial Features by Pre-trained CNN Model

We used our previous CNN model [9] trained for image
quality assessment to extract the spatial feature from the video
frame. In particular, patch-based learning is used to solve the
problem of lack of database, which is a problem in existing
IQA deep learning. The method used to extract spatial features
for VQA is shown in Fig. 2.

If the video given in Fig.2 is V and tth frame is Vt, then
the video frame Vt is divided into patch units, and nth patch
can be called Vt(n). For Vt(n), each patch is passed through
the local feature extraction part gθ(·) of Fig. 2 to extract the
local feature vector xn for nth patch (xn = gθ(Vt(n)) =
(x1

n, x2
n, ..., x100

n)). If there are Nm patches in tth frame,
we get set of feature vector X = (x1, x2, ..., xNm) through
the corresponding patches.

In order to extract meaningful features from X , mean and
variance were used in frame levels. Taking averages is often
used to analyze representative characteristics of global quality
in QA problems [8], and standard deviation was used to
analyze the global variation of local quality [12]. Thus, the
mean pooled vector µ = (µ1, µ2, ..., µ100) and the variance
pooled vector σ = (σ1, σ2, ..., σ100) is derived as follows:

µl =
1

Nm

Nm∑
n=1

xl
n, (1)

σl =
1

Nm

Nm∑
n=1

(xl
n − µl)2 (2)

where l is the pooled feature index (l=1,2,...100). Therefore,
if 200 feature vectors are extracted from each frame Vt of the
video (100 features from µl and 100 features from σl) and
a video frame exists up to T , a 200 × T -dimensional spatial
feature vector can be obtained from one video .

B. Temporal Features by Hand-crafted Methods

Our previous CNN model [9] is specialized to extract spatial
features, so it is necessary to add temporal features for the
algorithm to measure video quality. In this paper, we extract
temporal sharpness variation to extract temporal features.

(a) (b) (c)

Fig. 3. Temporal variation of frame sharpness due to video distortion in ”Pa”
sequence of LIVE video database. (a) 10th frame which has low distortion.
(b) 11th frame which has high distortion. (c) 12th frame which has very low
distortion.

(a) (b)

Fig. 4. Sharpness variation of video ”BQMall” in CSIQ video database.
Sharpness score is measured for each frame and standard deviation of
sharpness score are calculated for (a) Original video, (b) Distorted video.

1) Temporal sharpness variation features: Experiments
have shown that temporal variation of spatial cues has a
significant effect on predicting picture quality. Fig. 3 shows the
three consecutive frames of distorted video in the ”BQMall”
sequence of the CSIQ video database with mosquito noise at
the top and an enlarged view of the local patch at the bottom
shows the most noticeable changes in video. We can see that
the (c) of the three frames is nearest to the original, and the
distortion of (b) is the most severely distorted. By using H.
Kim’s algorithm, which measures the sharpness of video, the
sharpness of (c) was measured to be the largest and (b) to be
the most blurred. As the temporal variation of frame quality
increases, the contrast of the time domain in the temporal CSF
[13] increases, so the human recognizes the noise in the video.
In conclusion, we use the temporal sharpness variation features
because it reflects the human visual system characteristics of
temporal variation CSF of frame sharpness.

If the tth frame of video V is Vt, then the sharpness value
obtained by applying the sharpness metric S(·) derived from
our previous work [14] is S(Vt).

Fig. 4 shows the change of the sharpness value per frame
S(Vt) for the original image and the distorted image. We can
see that the sharpness variation is larger for the distorted frame.
Therefore, we used the variance of the sharpness value per
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Fig. 5. Framework of frame to video feature aggregation. For each frame,
N -dimensional feature vector is extracted. By feature aggregation, the final
video feature vector has 4N dimension.

frame as a feature of temporal sharpness variation. If the value
to be sought is σ(S(Vt)), it is obtained as:

σ(S(Vt)) =
1

T

T∑
t=1

(S(Vt)− µ)2. (3)

here, µ is obtained as the average of sharpness value S(Vt)
per frame.

III. FEATURE VECTOR LEARNING

A. Frame to Video Feature Aggregation

The proposed model is designed to extract spatial and
temporal feature vectors within a frame through pre-trained
CNN models and hand-crafted features. The extracted feature
vector only considers adjacent frame information and does
not reflect the overall tendency of the entire video frame.
Therefore, as shown in Fig. 5, a feature vector of frame level
requires an aggregation process to extract a video feature
vector which represents a quality of a video.

The process is shown in Fig. 5. It begins by extracting
spatial and temporal frame feature vectors for all frames of
a video. And then, frame feature aggregation process Z(·)
follows the feature extraction. Therefore, the N-dimensional
frame level feature vector extracted through the frame feature
extraction function can be expressed as Ft = hθ(Vt, Vt+1) =
(ft,1, ft,2, ..., ft,N ). Assuming that an f̄1, f̄2, f̄3, f̄4 is an N-
dimensional feature vector obtained through each of four
pooling functions, each feature vector is obtained as follows:

f̄1 = z1 (F) =
1

T

T∑
t=1

ft,n, (4)

f̄2 = z2 (F) =
1

T

T∑
t=1

(
ft,n − f̄1,n

)2
, (5)

where ft,l denotes nth component of the N-dimensional
vector extracted from tth frame. Equation (4) means average
pooling, which is often used in pooling to obtain global quality
in various VQA algorithms [8]. Equation (5) denotes the

TABLE I
PLCC AND SROCC COMPARISON ON THE LIVE VIDEO QUALITY

DATABASE.

VQA model LCC SROCC

FR
PSNR 0.8158 0.7490

SSIM [8] 0.8862 0.8884
MOVIE [16] 0.9124 0.8813

RR VQM [18] 0.7802 0.7858
STRRED [17] 0.8917 0.9051

NR

V-CORNIA [19] 0.8534 0.8423
V-BLIINDS [11] 0.8426 0.8267

VIIDEO [10] 0.6918 0.6739
Proposed 0.8572 0.8513

variance of frame quality, which reflects the change in frame
quality degradation.

In addition, it is known that the quality of the frame with
severe distortion in the video greatly affects the overall image
quality of the video [15]. To reflect these characteristics, we
averaged the upper and lower pth percentiles from the frame
feature histogram:

f̄3 = z3 (F) =
1

T p

∑
t>tp+

fht,n, (6)

f̄4 = z4 (F) =
1

T p

∑
t<tp−

fht,n (7)

where tp+ and tp− indicate the upper and lower pth per-
centiles in the histogram of frame features fht,n, respectively.
tp represents the number of p-percentile local qualities, i.e.,
tp = t · p/100.

B. Regression onto Subjective Video Quality Score

When 4×N dimensional video feature vectors are extracted
from mth video through frame to video feature aggregation,
the calculated feature vectors are regressed to the correspond-
ing subjective score ρm. The process results in finding a
parameter that minimizes the loss function l2:

Θ∗2 = arg min
Θ2

`2 ({V } , ρ̂m; Θ2) , (8)

where loss function l2(·) means mean squared error between
predicted video quality score and subjective score.

`2

({
Î ′lm, Î

′
rm

}
, ρ̂m; Θ2 = (θ, φ2)

)
(9)

=
1

MT

MT∑
m=1

(gφ2 (z (hθ ({V })))− ρ̂m)
2
,

where Mt represents the number of videos used in training
and gφ2

(·) represents the regression function with parameter
φ2. The computed loss l2(·) updates the parameter (θ, φ2) in
the model through the back-propagation process.

IV. EXPERIMENTAL RESULTS

State-of-the-art metrics were utilized to compare DeepVQA
against the performance of previous VQA models. Two well-
known coeffieicnts were used for benchmark: the Pearson
linear correlation coefficient (PLCC) and Spearman rank-order
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TABLE II
PLCC AND SROCC COMPARISON ON THE CSIQ VIDEO QUALITY

DATABASE.

VQA model LCC SROCC

FR
PSNR 0.7932 0.7253

SSIM [8] 0.8517 0.8661
MOVIE [16] 0.8912 0.8750

RR VQM [18] 0.7694 0.7698
STRRED [17] 0.8734 0.8822

NR

V-CORNIA [19] 0.8315 0.8216
V-BLIINDS [11] 0.8228 0.8069

VIIDEO [10] 0.6704 0.6498
Proposed 0.8532 0.8472

TABLE III
PLCC AND SROCC COMPARISON ON THE CSIQ VIDEO QUALITY

DATABASE, WHERE THE PREDICTION MODEL WAS TRAINED USING THE
LIVE VIDEO QUALITY DATABASE.

VQA model LCC SROCC

FR
PSNR 0.7624 0.7028

SSIM [8] 0.8307 0.8450
MOVIE [16] 0.8691 0.8548

RR VQM [18] 0.7382 0.7353
STRRED [17] 0.8426 0.8524

NR

V-CORNIA [19] 0.8175 0.8083
V-BLIINDS [11] 0.8024 0.7886

VIIDEO [10] 0.6523 0.6312
Proposed 0.8471 0.8398

correlation coefficient (SROCC). 80% of the databases were
randomly selected and used for training, and the remaining
20% of the databases were used for testing. In addition, we
doubled the size of the databases by horizontally reversing
the videos. This is based on the assumption that the quality
score that a person feels will be the same, even if the video is
reversed, since the human eye is a symmetric structure. We
compared the performances of the proposed model against
those of the previous VQA models. Table I and II shows
the PLCC ans SROCC of these VQA models on the LIVE
and CSIQ video quality database. In terms of performance,
DeepVQA shows higher performance than other NR VQA
models. Also, our model shows similar performance compared
to FR and RR metrics.

To demonstrate the generality of proposed model, we also
conducted a cross-database evaluation. After learning a Deep-
VQA model using 80% of the training data from the LIVE
VQA database, predicted quality scores were inferred on the
CSIQ video database using the trained model parameters.
Table III shows the LCC and SROCC of VQA models using
this train-test sequence mentioned before. As shown in Table
III, the overall performance of our model was significantly
better than that of other NR VQA algorithms and shows
similar performance compared to FR and RR metrics.

V. CONCLUSIONS

In this paper, we proposed a deep learning based approach
to predict the quality of distorted videos without reference
ones. We used a pre-trained CNN model to extract spatial
features and hand-crafted features to extract temporal features.
As a result, DeepVQA get a PLCC score which is higher than

the other state-of-the-art VQA models. However, we manually
calculated the hand-crafted temporal features and proceed to
deterministic pooling in the process of aggregation. Therefore,
it is not true deep learning. Therefore, we will study how
to automatically extract temporal features from deep learning
model and the method of adaptive temporal pooling according
to the characteristics of video contents.
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