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Abstract—In this paper, we discuss non-negative matrix fac-
torization (NMF) applied to chroma feature sequences to reduce
the chroma-specific noise in chord estimation from music signals
using the hidden Markov model (HMM).

Even in the case of single pitch sounds, the raw 12-dimensional
chroma vectors obtained from the music signal by summing and
normalizing the spectrum by octaves often contain irrelevant
components such as non-octave overtones falling into different
pitch classes and cause inaccuracies in estimation of harmonies.
NMF applied to the chroma domain is expected to suppress
such chroma components in the NMF activation matrix caused
by overtones, and thus “purifies” the noisy chroma vectors. By
reducing the dimensionality to 12 dimensions as opposed to NMF
applied to the raw spectrum, we expect advantages with respect
to statistical robustness as well as computational cost for pitch
class estimation of single and multiple tones.

We use the ”purified” chroma vectors in combination with a
harmony progression model based on an HMM where the NMF
activation distributions are modeled as observations associated
with hidden harmonies, whose transition probabilities have been
obtained statistically. We attempt to improve harmony estimation
accuracy by combining suppression of irrelevant components and
the HMM-based harmony model.

In the experimental evaluation, we demonstrate the reduction
of irrelevant components in raw chroma vectors computed from
recordings of musical instruments. In addition, using music audio
data with harmony annotation from the RWC database, we
compare the harmony estimation accuracies using our method
and conventional chroma.

I. INTRODUCTION

In this paper, we propose a non-negative matrix factorization
method for chroma sequences to reduce chroma specific noise
for chord estimation, utilized in a hidden Markov model
(HMM).

Techniques for analyzing music signals are used in tasks
such as chord estimation, key estimation, and automatic tran-
scription. Chroma vectors are commonly used for harmony
estimation and contain magnitude values of the 12 pitch
classes of western music [1]. To account for the time sequential
nature of harmony progressions, HMMs are also often used
for harmony estimation [2]. Futhermore, Saito et al. proposed
a harmony estimation method using Specmurt chroma [3],
which is a method suppress harmonic overtones in a music
signal [4]. Also, as a method using music theory, Ueda et
al. describe a chord estimation method taking into account
key modulation using functional harmony [5], Uemura et
al. proposed a chord estimation method based on harmony
similarity using a doubly nested circle of fifths [6], Mauch
et al. proposed a harmony estimation method focusing on the

relationships between harmonies and their constituent notes
and using a dynamic Bayesian network to account for the
structure of music such as repetition patterns [7], [8], [9].
Kurauchi et al. proposed a chord estimation method based on
the fact that valley frequencies (Spectrum Dip) differ between
different harmonies [10], and Kurokawa et al. performed
harmony estimation using that Spectrum Dip method with
chroma vectors [11].

A lot of music analysis methods using NMF have been
published. Raczyński et al. analyzed music signals using 12
NMF basis vectors, one for each pitch class [12]. Maruo et
al. proposed a method combining harmony estimation using
a Bayesian HMM with pitch estimation utilizing a Bayesian
NMF [13].

Furthermore, harmony analysis from music audio signals us-
ing neural networks has been reported to record high harmony
analysis accuracy. Shigtia et al. proposed a harmony analysis
method in which harmony sequence HMM was replaced with a
RNN [14]. Filip Korzeniowski and Gerhard Widmer proposed
a harmony estimation method by using convolutional neural
network and conditional random field [15].

Music audio signal analysis methods using chroma vectors
are widely used, but conventional chroma vectors contain irrel-
evant spectrum components (e.g. harmonic overtones), which
make harmony estimation more difficult. Therefore, in this
paper, we propose a method to reduce irrelevant components
of chroma vectors using NMF. By using this method, we
expect to obtain activation distributions with reduced noise.
Moreover, compared to conventional NMF analysis of music
signals, we expect to improve calculation speed and to reduce
statical error, because the basis is reduced to 12 dimensions.
Furthermore, even with sound sources that contain a lot of
noise, harmony estimation accuracy improvement could be
expected, if the NMF basis vectors are learned for the noisy
data.

II. SEMI-SUPERVISED CHROMA-NMF

A. Chroma Feature Value

A chroma matrix, denoted as ch(k, t), and proposed by
Fujishima[1] can be obtained from the squared values of a
semitone Constant-Q Transform (CQT) Φ(f, t).

ch(k, t) = log(
n∑

i=0

Φ(12i + k, t)), k = 0, · · · , 11 (1)
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Fig. 1. Chroma of an audio signal containing the 12 pitches of the chromatic
scale generated with sine waves in 1 second intervals.

Fig. 2. Chroma of an audio signal containing the 12 pitches of the chromatic
scale generated with sawtooth waves in 1 second intervals.

where n represents the number of octaves included, Φ(f, t)
represents the magnitude of the CQT at frequency f and time
t, and ch(k, t) represents the magnitude of the pitch class
number k at time t.

Fig. 1 shows the chroma matrix of an audio signal con-
taining sine waves with pitches ascending in semitones from
C to B in one second intervals. Fig. 2 displays a chroma
matrix similarly obtained using sawtooth waves. Comparing
the two graphs, one can see the irrelevant components that
result from the harmonic structure of the sawtooth waveform,
even occurring in recorded monophonic sound.

B. KL-Divergence Standard Non-negative Matrix Factoriza-
tion

Non-negative Matrix Factorization(NMF) is an algorithm
that decomposes one non-negative matrix into two non-
negative matrices. It is applied in various fields such as
image, sound, biological signal analysis. Especially in the
field of audio analysis, NMF can be applied easily, because a
spectrum is a nonnegative matrix. In this paper, we define:

Fig. 3. The matrix that is concatenated the chroma matrices of labeled training
data and test data to be analyzed.

Non-negative Matrix (spectrum): Y ∈ RM×N

Basis matrix: W∈ RM×R

Activation matrix: H∈ RR×N

The two non-negative matrices W and H are computed to
approximate the original matrix as follows.

Y ≈W ×H (2)

In this paper, we use the KL divergence in the NMF
algorithm[12]. The basis matrix W and activation matrix H
are obtained using the following update functions.

H ← H �
W T

Y

WH
W T 1

(3)

W ←W �

Y

WH
HT

1HT
(4)

where the element-wise product of X and V is represented
by X � V . The division of matrices is performed for each
element.

C. Semi-Supervised Chroma-NMF

“Semi-supervised chroma-NMF” is a method to decompose
chroma matrices obtained by processing the power spectro-
gram of music audio signals into basis and activation matrices.
In this paper, the number of basis vectors of the NMF is set to
12 corresponding to the 12 pitch classes. Before the training
process, the chroma basis vectors are initialized such that the
magnitude of the respective pitch class is significantly larger
than all other magnitudes. A row of W encodes the magnitude
distribution of each chroma vector (including overtones), and a
column of W represents a basis vector corresponding to each
of the 12 note classes. A row of H encodes development over
time, and an activation column the magnitude of each chroma
vector at the corresponding point in time.
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As the first step of our method, a constant-Q transform is
applied to an audio signal and the result converted into chroma
vectors by summing magnitudes over all octaves. We assume
that the harmonic structure of each instrument is similar.
We exploit this by applying NMF on unknown data and
data containing groundtruth labels simultaneously. Thereby the
algorithm is guided to learn harmonic structures of notes as
basis vectors due to the existing labels of the groundtruth part
of the data, while it is also able to account for harmonic
properties of the intruments in the music to be analyzed.
We implement such a semi-supervised learning process by
concatenating the chroma matrices of labeled training data
and test data to be analyzed(Fig.3). NMF is then applied to
the concatenated matrix, thereby being influenced by both data
types when estimating optimal basis vectors. The concatenated
chroma matrices are denoted as Y .

The part of the activation matrix H in the time frame of the
training data is initialized according to the sound attenuation
model. The sound attenuation model assumes that the power
of a single tone diminishes exponentially with time (like when
hitting a piano key). The basis matrix W and activation matrix
H are updated using equation (3) and (4). However, the
training data portion of the activation is not updated.

We assume that the relative harmonic overtone structure
is the same for every pitch class, independent from absolute
pitch, i.e. the columns of the basis matrix can be matched by
shifting. Therefore, we suppress variations between in basis
vectors by averaging the correspondingly shifted basis vectors
after each update step. The average vector is set as the first
column of the basis matrix W . In the second column, the
mean vector shifted by one semitone. Accordingly, we shift
the elements of the mean vector for each column and set the
average vector to all twelve columns.

Updating is repeated until the likelihood in the KL-
divergence becomes sufficiently small. In this paper, in order
to avoid the arbitrariness of scale of the basis matrix W , it
was was normalized to

∑
m Wm,r = 1.

In our method, chroma matrices are obtained by decompos-
ing power spectrogams of music audio signals into basis and
activation matrices using a NMF algorithm. And advantage of
our method is the improvement of note basis vector estima-
tion using easily obtainable training data, which is however
limited by the hypothesis that harmonic structures of different
instruments are similar (in case of differing harmonic struc-
tures, estimation accuracy is expected to decrease). Therefore,
method differs from previous research in that it facilitates
the initialization of the algorithm and reduces computational
cost. For intstance, a similar method proposed by Raczyński
et al.[12] applies NMF for multi-pitch analysis, but does not
reduce the spectrogram to chroma, instead defining 12 NMF
basis vectors with 88 entries each and consequentially higher
computational cost. Maruo et al.[13] proposed another similar
method that first applies NMF with 88 basis vectors, which
are supposed to learn harmonic structures of single notes
and then computing chroma from the NMF result afterwards,
which is the inversion of the two steps of our algorithm and

requires more computational time. Lastly, Ueda et al.[5] have
an objective very similar to ours, which is to reduce the
irrelevant components in chroma vectors, but use a very dif-
ferent approach. They remove such irrelevant components by
minimizing the non-diagonal entries of the chroma covariance
matrix.

D. Semi-Supervised “Chroma-NMF” Applied to Chord Esti-
mation

In this section, we describe a method to apply semi-
supervised chroma NMF discussed in section II to chord
estimation from audio signals.

Fujishima[1] proposed a method for harmony estimation
by computing the Euclidean distance between chroma and
harmony template vectors. However, the harmony template
vectors used in the experiment of [1] are ideal vectors (12-
dimensional vectors with the magnitudes of the pitch classes
contained in the respective harmony set to 1, and all others
set to 0) and the irrelevant components in the chroma vectors
were not considered. Activation matrices obtained by chroma-
NMF make it easier to determine where each note sounds,
by removing irrelevant components. Therefore, improvement
of the accuracy of harmony estimation using NMF harmony
template vectors can be expected.

We use an HMM for smoothing of the estimation results
and to reduce the influence of occasional nonharmonic tones.
The hidden states of the HMM are the harmony labels. As a
limitation of the model, high recognition accuracy can not be
expected if the music audio signal includes many nonharmonic
tones. Furthermore, if recognition of erroneous harmony labels
is made due to nonharmonic tones, the recognition accuracy
of the harmony of the entire song is degraded due to error
propagation in the HMM.

The emission probabilities of the HMM are set according
to template vectors of harmonies derived heuristically with
reference to [1]. Each harmony template vector has twelve
elements corresponding to each note class. A chord template
vector ti is denoted as follows.

t =


t1
t2
t3
...
t12

 (5)

where h denotes the harmony corresponding to the template
vector. Each pitch class contained in a harmony is set to 1/N
where N is the number of pitch classes in the harmony.

To compute the probability of a specific harmony hk given
an observed activation vector x, we first calculate the squared
distance d between the harmony template vector and the
observation.

d(hk) =
∑

(ti − xi)
2 (6)

We then compute the probability from this distance as follows.

p(hk|x) =
e−d(hk)/2∑
i e

−d(hi)/2
(7)
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TABLE I
PERCENTAGE OF IRRELEVANT COMPONENT MAGNITUDES IN CHROMA

chroma chroma-NMF
sawtooth 32.8% 22.2%
piano 24.2% 17.3%
trumpet 40.0% 19.8%

Percentages computed from an audio data generated from MIDI data containing
Pachelbel’s Canon’s harmony sequence using different virtual instruments.

where the normalization factor is the sum over all possible
harmonies. By considering p(hk|x)t as the emission prob-
ability of the HMM at time t and performing maximum
likelihood estimation, a harmony label sequence is obtained.
The transition probabilities of the HMM are obtained by
extracting harmony sequence statistics from an existing music
corpus.

III. EVALUATION EXPERIMENT ON “SEMI-SUPERVISED
CHROMA-NMF”

In this section, we evaluate how well irrelevant components
in chroma are suppressed when applying semi-supervised
chroma NMF by comparing the results with conventional
chroma.

A. Experimental Conditions

We prepared MIDI data which contains the following chord
sequence (Pachelbel’s Canon transposed to C).
{Cmaj,Gmaj,Amin,Emin, Fmaj,Cmaj, Fmaj,Gmaj}
MIDI velocity and tempo (one second per chord) is constant
and all pitches are contained in the same octave. The MIDI
data was then turned into audio data using simple sawtooth
waveforms as well as virtual piano and trumpet instruments.
In all three cases, audio data of a note scale (from C to
B, one note per second) played on a piano was used as
training data (as described in section II-C). The correct
answer matrix of the training data was prepared taking not
only onset times, but also the sound attenuation model into
account, i.e. the assumption that the piano sound diminishes
exponentially with time. Both training and test data were
analyzed using CQT with a window shift of 40 ms. As a
method of evaluation, we compare the ratio of irrelevant
components (combined magnitude of pitch classes not in the
MIDI data at the respective point in time) in chroma vectors
obtained with and without NMF processing as shown in table
I.

B. Experimental Result

Fig.4 and 7 display the chroma of the Canon chord sequence
played by trumpet and piano, respectively. Fig. 5 and 8 show
the activation of chroma-NMF played by trumpet and piano,
respectively. Furthermore, the basis on which the sound source
of the trumpet or the piano has been learned is shown in Fig.
6, 9. As shown in Table I, it was found that the magnitude
of irrelevant components was reduced by using this method,
in comparison with conventional chroma. As expected, the
harmonic overtone component distributions of instruments

Fig. 4. Unprocessed chroma of Pachelbel’s Canon (transposed to C) played
by a virtual trumpet instrument.

Fig. 5. Activation of semi-supervised chroma NMF of Pachelbel’s Canon
(transposed to C) played by a virtual trumpet instrument.

were learned in form of the vectors of the basis matrix W,
and consequently, the resulting activation matrix H contained
less harmonic noise. Furthermore, the basis matrix W can be
learned without requiring a lot of training data as opposed
to methods based on neural networks. A disadvantage is that
pitch classes can be mistakenly treated as overtones, e.g. when
a C note and a G note are played at the same time. In this
case, the G pitch class is a major overtone of the C pitch class.
Consequently, The magnitude of actually played notes (the G
note in the example) is also reduced as can be clearly seen in
Fig. 7.

IV. EXPERIMANTAL EVALUATION OF “SEMI-SUPERVISED
CHROMA NMF” APPLIED TO CHORD ESTIMATION

A. Experimental Conditions

In this section, we discuss the evaluation of chord esti-
mation based on the method described in section II-D. We
chose some songs from the RWC database and our algorithm
estimated chords from the activation matrix H obtained using
semi-supervised chroma-NMF, finally applying a HMM for
smoothing. At this time, taking into account the limitations of
the model, songs without clear harmonies (e.g., containing a
lot of parts where only single notes are played) were excluded
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Fig. 6. Basis vectors of semi-supervised chroma NMF obtained from Pachel-
bel’s Canon (transposed to C) played by a virtual trumpet instrument.

Fig. 7. Unprocessed chroma of Pachelbel’s Canon (transposed to C) played
by a virtual piano instrument.

from the test data. We selected songs containing harmony for
the most part from the RWC database. Specifically, these songs
are shown in Table II.

For this paper, harmony estimation was performed with the
following settings.

• CQT analysis was performed with a window shift of 40
ms.

• The harmony transition probabilities of the HMM were
statistically obtained from the harmony-labeled data of
the Isophonics database.

• Harmony labels were estimated for every 40 ms time-
frame.

• Only the chord qualities major and minor were consid-
ered.

Similarly, chord estimation was performed based on min-
imum Euclidean distance between chroma-NMF activation
vectors and harmony template vectors as described in section
II-D. The harmony template vectors were defined by setting
values of the N pitch classes contained in the harmony to
1/N and all other vector elements to 0. For comparison, chord
estimation was also performed using conventional chroma as
in [1]. The same harmony template vectors were used. For
evaluation, harmony annotation data in [16] was used as the

Fig. 8. Activation of semi-supervised chroma NMF of Pachelbel’s Canon
(transposed to C) played by a virtual piano instrument.

Fig. 9. Basis vectors of semi-supervised chroma NMF obtained from Pachel-
bel’s Canon (transposed to C) played by a virtual piano instrument.

groundtruth. The estimation accuracy is shown in table II.

B. Experimental Results

As shown in table II, an estimation accuracy decrease of
about 6% was observed in in comparison with estimation
based on conventional chroma. In this experiment, we could
not confirm significant improvement of estimation accuracy
when applying chroma-NMF in combination with HMM
smoothing for chord estimation. A reason for the accuracy
decrease could be the confusion of played notes with over-
tones, resulting in reduction of not only overtone noise but also
of harmony tone magnitudes. A further weakness, common
to most chroma based harmony estimation methods is the
problem that non-harmonic tones pose. Even if chroma allows
to correctly identify sounding notes, chord estimation based
on simple template vectors is unable to discern harmonic
tones from non-harmonic ones, and therefore often fails to
correctly identify the current harmony. Consequently, in order
to improve the accuracy of harmony estimation, it is necessary
to develop a harmony estimation method considering non-
harmonic tones in real music. In particular, since a harmony
template vectors are set heuristically, it is not possible to
capture pitch class distributions of actual songs. Thus, if it
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TABLE II
HARMONY ESTIMATION ACCURACY

chroma chroma-NMF chroma-NMF
&HMM

RWC-C2 5.6% 6.2% 6.9%
RWC-C6 27.5% 26.4% 31.3%
RWC-C22 52.3% 43.3% 34.4%
RWC-C23A 25.5% 16.4% 15.6%
RWC-C23E 40.7% 33.6% 35.7%
RWC-C28 41.1% 41.3% 38.0%
RWC-C29 62.9% 55.3% 61.9%
RWC-C30 63.0% 52.6% 63.0%
RWC-C32 41.0% 33.5% 31.7%
RWC-C33 30.7% 28.4% 25.5%
RWC-C35A 28.0% 44.2% 35.5%
RWC-C35B 36.8% 37.9% 28.0%
RWC-C35C 40.5% 26.0% 20.8%
Overall result 36.2% 31.6% 31.2%

was possible to accurately obtain harmony template vectors
by another method, improvement of harmony recognition
accuracy could be expected.

V. CONCLUSIONS

In this paper, we have proposed a method to analyze musi-
cal acoustic signals using semi-supervised chroma-NMF and
discussed harmony estimation based on this method. By using
semi-supervised chroma-NMF, it has been shown possible to
suppress the magnitude of pitch classes of irrelevant overtones.
However, the use of chroma-NMF combined with HMM
could not demonstrate significant improvement of harmony
estimation, possibly due to suppression of harmonic tones
mistakenly treated as overtones. One of major reasons causing
the low estimation precision is non-harmonic tones in the
melody.

In the future research, we intend to implement more so-
phisticated emission probabilities for the harmony estimation
HMM that can take non-harmonic tones into account. Further-
more, we plan to develop an algorithm which allows its user to
manually add harmony labels to a small part of a song, which
are then used for training in order to estimate the harmonies
of the complete song.
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