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Abstract—This paper proposes a method of monaural sound
source separation by clustering based on the similarity of
basis vectors decomposed by Non-negative Matrix Factorization
(NMF). In the proposed method, the basis vectors are clustered
on the assumption that the similarity between the basis vectors
constituting the target sound source is higher than the similarity
with the basis vectors of the other sound sources. Hierarchical
clustering, which forms clusters in descending order of feature
similarity, is introduced. Since it is unnecessary to explicitly
determine the number of clusters in hierarchical clustering,
hierarchical clustering can be classified into an optional number
of clusters according to the threshold. Therefore, the proposed
method can separate to an optional number of sound sources.
From the numerical evaluation result, it was found that the Signal
to Distortion Ratio (SDR), which is an evaluation index of sound
source separation, can be improved by approximately 6 to 10 dB.
Undesirable cases in which most of the basis vectors are classified
into the same cluster are also discussed. In addition, sound
source separation with mixed three mixed sound sources was
also evaluated, and it was confirmed that SDR can be improved
by about 10 dB.

I. INTRODUCTION

In recent years, acoustic event detection technology [1][2],
which is used to detect the sounds of everyday life, has
attracted attention. This technology is expected to be applied to
a life log system, e.g., a security system that detects footsteps
and analyzes the noise produced. In everyday life, it is rare for
only the desired sound source to be observed; in most cases,
sounds from a mixture of multiple sources are observed. If a
mixture of sounds from multiple sources is used as input in an
algorithm that detects sound from a single source, each sound
source cannot be accurately recognized, and the detection
accuracy is degraded. To resolve this, sound source separation
is used a preprocessing technique to reduce the overlap of
sound sources [3].

Blind Source Separation is a technique that extracts sound
from a single source from sounds from a mixed source
without explicitly using information about recording environ-
ments, mixed systems, sound source positions, etc. When the
number of sound sources is less than the number of obser-
vation channels, the separation method based on statistical
independence [4][5] is widely applied. In the method based

on statistical independence, an inverse mixing system that
separates the mixed sound source into each sound source
is estimated under the assumption that each sound source
is statistically independent. This method needs to know the
number of sound sources beforehand. Therefore, it is necessary
to appropriately change the algorithm and the number of
microphones; however, the application of the algorithm is
limited. When the number of observation channels is smaller
than the number of sound sources, the separation method
based on Non-negative Matrices Factorization (NMF) [6][7]
is widely applied. In an NMF based method, the spectrogram
obtained by the Short-Time Fourier Transform (STFT) [8]
is regarded as an observation matrix and decomposes into
non-negative basis vectors and activations. The sound source
separation is performed by classifying the basis vectors of
the mixed sound source and reconstructing the spectrogram to
each sound source. Multichannel NMF (MNMF) [9] archives
highly accurate separation by using the spatial differences
between microphones for a mixed sound source observed
by multiple microphones. However, MNMF requires a large
calculation cost. For the monaural channel, a method of
supervised and semi-supervised musical instrument separation
[10][11], supervised speech separation [12], and supervised
drum separation [13] have been proposed. However, since the
sounds of everyday life are much more diverse than the sounds
of musical instruments or speech, it is difficult to obtain the
training data for all sound sources. Therefore, an unsupervised
method that realizes monaural sound source separation without
using prior information is required.

This paper proposes an unsupervised method of monaural
sound source separation by clustering, based on the simi-
larity of the basis vectors decomposed by NMF. The pro-
posed method introduces Agglomerative Hierarchical Clus-
tering [14], which forms clusters of the basis vectors in a
descending order of similarity. The system overview of the
proposed method is shown in Fig. 1. Clustering is performed
on the feature vector extracted from the basis vector, and
classified into clusters for each sound source. Sound source
separation experiments were conducted to evaluate the pro-
posed method.
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Fig. 1. Overview of the proposed method.

II. OUTLINE OF SOUND SOURCE SEPARATION BY
NON-NEGATIVE MATRIX FACTORIZATION

NMF is an algorithm that decomposes a non-negative ob-
served matrix X ∈ RI×J

≥0 into two non-negative matrices:

X ≈ TV , (1)

where T ∈ RI×K
≥0 is the basis matrix, which represents the

spectral pattern, and V ∈ RK×J
≥0 is the activation matrix,

which represents the temporal gain. Also, I is the number
of frequency bins, J is the number of time frames, and K is
the number of basis vectors.

The decomposition is performed by minimizing the distance
between X and TV :

min
T ,V

D(X∥TV ), (2)

where D(·∥·) represents the divergence between the observa-
tion and a model. Kullback–Leibler (KL) divergence is one of
the NMF cost functions and is defined as follows:

DKL =
∑
i

∑
j

(
xij log

xij∑
k tikvkj

− xij +
∑
k

tikvkj

)
,

(3)
where xij , tik and vkj are the non-negative elements of matri-
ces X , T , and V , respectively; i = 0, · · · , I , is the frequency
index; j = 0, · · · , J is the time index, and k = 1, · · · ,K is
the basis index. Minimization of the cost function based on
KL divergence is performed using the multiplicative updating
rules, which can be given by

tik ← tik

∑
j xij(

∑
k′ tik′vk′j)

−1vik∑
j vkj

, (4)

vkj ← vkj

∑
i tikxij(

∑
k′ tik′vk′j)

−1∑
i tik

. (5)

Decomposition is performed by repeatedly applying these
expressions to the matrices T and V , which have been given
random initial values. In general, NMF algorithm is not essen-
tially a sound source separation method, but an approximation
expression obtained by minimizing the divergence between
X and TV . The mixed sound source is modeled as a sum
of spectral parts. There is no guarantee that spectral parts

represent one sound source; it is possible for spectral parts
to represent the components of one or more sound sources.
However, in many cases, the basis vector represents a distinc-
tive component of a single sound source. If the decomposed
basis vectors are properly clustered, the overlap of the sound
sources is reduced.

III. NMF BASIS VECTOR CLUSTERING

A hierarchical clustering method based on the similarity of
the spectral pattern which classified the basis vectors of each
sound source is introduced.

In the proposed method, the basis vectors are clustered
under the assumption that the similarity of the basis vectors
constituting the target sound is higher than that of the basis
vectors constituting other sound sources. In the hierarchical
clustering method, the distances between clusters are calcu-
lated, and a new cluster is formed by coupling the clusters
closest in distance.

Here, the basis vector clustering procedure of the proposed
method is described in detail. As a preparatory step, a feature
vector extracted from each basis vector is defined as an initial
cluster. The number of initial clusters corresponds to the
number of basis vectors K. The number of samples included
in the cluster is defined as the cluster size n. Since nothing
is coupled in the initial cluster, the cluster contains only one
sample. Thus, the size of the initial cluster n is equal to 1.
After the initial clusters are defined, clustering is performed
as follows:

1) The distance between the initial clusters are calculated
based on the cosine similarity as follows:

dcos(a, b) = 1− a · b
|a||b|

, (6)

where a and b are feature vectors for evaluating simi-
larity.

2) New clusters are generated by coupling clusters with
minimal intercluster distance. The size of the new cluster
is given by the sum of the sizes of each cluster.

3) Intercluster distance is calculated again. In the case of
n ≥ 2, the intercluster distance dC1C2

is calculated based
on the group average method as follows:

dC1C2
=

1

n1n2

∑
x1∈C1

∑
x2∈C2

d(x1, x2), (7)

where, n1 and n2 are the sizes of the clusters C1 and
C2, respectively, and d(x1, x2) is the distance between
the samples x1 and x2.

Cluster coupling is repeated until a single cluster that
includes all the initial clusters is generated. The final resultant
cluster is divided at an appropriate distance to obtain basis
vectors separated for each sound source.

An example of simple clustering is shown in Fig. 2.
Consider the case of clustering four samples of A–D in the
feature space shown in Fig.2 (a). A–D are defined as initial
clusters. The size of each initial cluster is set to n = 1. In
the first coupling, A and B, which have the smallest distance
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n = 2

n = 3
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Fig. 2. An example of hierarchical clustering and dendrogram representing
the clustering process.

to each other in the feature space, are coupled to generate
a new cluster AB. Next, the distance between the clusters is
recalculated. Since the size of the new cluster is n = 2, the
distance between AB and C is calculated as the average of
the distances A–C and B–C. Similarly, the distances between
AB and D is calculated as the average of the distances A–
D and B–D. In this example, AB and C, which are closet to
each other than AB and D, are coupled to generate a new
cluster with a size of n = 3. Finally, the distance between
ABC and D is generated by coupling ABC and D. The size
of the new cluster is n = 4. This cluster contains all the
initial clusters, so the clustering process is terminated. As
shown in Fig. 2 (b), in the hierarchical clustering method, it is
possible to represent the process in which clusters are coupled
according to the distance by using the dendrogram. The height
of the bars representing cluster coupling corresponds to the
intercluster distance. In the proposed method, clusters coupled
at a distance less than the threshold are regarded as clusters one
sound source. Therefore, the proposed method can separate the
optional number of sound sources. In this study, the threshold
was set to 0.7×dmax using an implementation of Scipy, where,
dmax is the maximum value of the distance.

IV. EXPERIMENTS

A. Experimental setup

The following were used as sound source: phone ring-
ing (phone2), frying pan tapping (pan), alarm clock ringing
(clock2), bell ringing (ring), correct answer ping (pipong),
sound of paper tearing (tear) from the RWCP real environment
voice / sound database [15], and the sound of female speech
(speech) from the JSUT dataset [16]. The mixed signal was
generated by convolving E2A impulse response contained in
the dataset. The sampling frequency of the impulse responses
and sound sources was 48000 Hz, and the reverberation time
in the room was 300 ms. The recording environment of the
E2A impulse response is shown in Fig. 3.

The observed signals were transformed into a spectrogram
by STFT with a window length of 85 ms and shift length of
43 ms. In order to perform auditory and objective evaluation,
it was necessary to prioritize the representation accuracy of

2 m

50°50°

Source 1 Source 2

Mic.

Fig. 3. Recording the E2A impulse response condition.

※ Error bars indicate 95% CI

other sources

phone2

Fig. 4. SDR improvement by clustering.

the sound source, and the number of basis vectors K was set
to 60. The number of iterations was set to 1000 times. The
obtained basis vectors were converted into 16 dimensions of
Mel-Frequency Cepstrum Coefficients (MFCC).

B. Evaluation

The separation results were estimated by improving the
Signal to Distortion Ratio (SDR) [17], which evaluates the
accuracy of the sound source separation, e.g., distortion caused
by sound source separation, interference of non-target sound,
and noise.

The SDR improvement was calculated to the following
procedure. The separated signal ŝ(t) was decomposed into four
elements:

ŝ(t) = strue(t) + einterf(t) + enoise(t) + eartif(t), (8)

where strue(t) is the target source signal; einterf(t) is the in-
terference of non-target sound; enoise(t) is noise, and Eartif(t)
represents artifacts. SDR is defined by the following energy
ratio:

SDR = 10 log10

∑
t strue(t)

2∑
t(einterf(t) + enoise(t) + eartif(t))2

. (9)

The improved SDR, SDRimp, was calculated as follows:
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SDRimp = SDRafter − SDRbefore, (10)

where SDRbefore is the SDR before clustering, and SDRafter

is the SDR after clustering.
The correspondence to each target sound source was man-

ually confirmed in the evaluation as the proposed clustering
method is an unsupervised method, and the resulting cluster
are exclusively groups of basis vectors with high similarity.

C. Results
The results of sound source separation for each mixture pat-

tern are shown in Fig. 4. Here the separation result in the case
of mixed sound sources is shown. Error bars represent 95 %
of the average confidence intervals. A significant improvement
in SDR can be found in the pan mixture case, clock2 mixture
case, ring mixture case, pipong mixture case, and speech
mixture case. SDR improvements could not be obtained in the
tear mixture case, which means the separation was insufficient.
The dendrograms of the pan and tear mixture cases are shown
in Fig. 5 and Fig. 6, respectively. In Fig. 5, it can be confirmed
that the basis vectors with a high similarity form clusters
hierarchically according to the proposed method. It can also
be confirmed that clustering was properly performed based on
similarity for all the sound sources, except in the tear mixture
case.

In Fig. 6, most of the basis vectors in the tear mixture case
are classified as the same cluster: “phone2.” An example of
the basis vector which represents a part of the tear is shown
in Fig. 7 (a). This basis vector has a flat power in the entire
frequency band. An example of the basis vector classified as
“phone2” is shown in Fig. 7 (b). As shown in this figure,
the basis vector also has a flat power in the entire frequency
band, but two peaks can be observed around 2900 Hz and
5600 Hz. These peaks represent a part of phone2, and the basis
vectors are considered to contain both the tear and phone2
components. The same phenomenon can be confirmed in the
speech mixture case. The spectrogram of phone2 in the speech
mixture case is shown in Fig. 8. SDR improvement is good,
and the reduced overlap of the sound sources can be confirmed.
However, a clear overlap of the sound source can be observed
at approximately 1.1 sec. This is the sound of /s/ in the speech,
which is like a tear with power in the wide band, so it cannot
properly represent overlap with phone2. This is because the
NMF algorithm does not explicitly perform the sound source
separation. In the case of a sound source with power in all
frequency bands, such as a tear, it is difficult to represent the
overlap of sound sources, which leads to undesirable results.

The results of the situation with three mixed sound sources
is shown in Fig. 9. An SDR improvement of about 10 dB is
also obtained in this case. The dendrogram of the situation
with three mixed sound sources is shown in Fig. 10. In order
to ensure a sufficient number of bases, K is set to 180. Highly
similar basis vectors were classified into each cluster. From the
above, it can be found that the proposed clustering method can
perform even for three sound sources mixed by a monaural
microphone.
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Fig. 5. Dendrogram for the pan mixture case.
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Fig. 6. Dendrogram for the tear mixture case.
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Fig. 7. Basis vectors represent the (a) tear and (b) cluster for “phone2.”
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Fig. 8. Spectrogram of phone2 from speech mixture sound

※ Error bars indicate 95% CI
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Fig. 9. SDR improvement by clustering the three sound sources.
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Fig. 10. Dendrogram of the three sound sources.

V. CONCLUSIONS

This paper proposed an unsupervised method of monaural
sound source separation by clustering based on the similarity
of basis vectors decomposed by NMF. Numerical experiments
were conducted, and SDR improvements of approximately
6 dB to 10 dB were obtained. An experiment in which sounds
from three sources were mixed by a monaural microphone
was conducted, and an SDR improvement of about 10 dB
was obtained. From this result, it can be concluded that the
proposed clustering method can perform correctly for sounds
from up to three sources mixed by a monaural microphone.
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