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Abstract—A novel post-filtering method using generative ad-
versarial networks (GANs) is proposed to correct the effect of
a nonlinear distortion caused by time-frequency (TF) masking.
TF masking is a powerful framework for attenuating interfering
sounds, but it can yield an unpleasant distortion of speech (e.g.,
a musical noise). A GAN-based autoencoder was recently shown
to be effective for single-channel speech enhancement, however,
using this technique for the post-processing of TF masking
cannot help in nonlinear distortion reduction because some TF
components are missing after TF-masking. Furthermore, the
missing information is difficult embed using an autoencoder. In
order to recover such missing components, an auxiliary reference
signal that includes the target source components is concatenated
with an enhanced signal, is then used as the input to the GAN-
based autoencoder. Experimental comparisons show that the
proposed post-filtering yields improvements in speech quality
over TF-masking.

I. INTRODUCTION

Speech enhancement aims at eliminating unexpected harm-
ful noise from microphone observations in order to improve
the quality and intelligibility of speech, which is important in
wave generation for telecommunications and hearing aids. In
addition, reducing noise plays an important preprocessing role
in automatic speech recognition (ASR) in noisy environments.

Existing speech enhancement techniques can be categorized
as linear or nonlinear approaches. TF masking [1] is a typical
example of the latter approach, which attenuates adverse
components, such as the interference source and diffuse noise,
using a nonlinear filter that only passes TF components of the
target source. Such nonlinear processing generally performs
well in reducing interfering components, but it tends to unduly
delete target source components as well, inducing unpleasant
distortions, referred to as musical noise. Temporal smooth-
ing [2] in a cepstral domain is able to remove such nonlinear
distortion, but it induces other reverberation-like distortions.
Denoising autoencoders (DAEs) are often used in speech
enhancement problems and have been shown to outperform
conventional nonlinear methods [3]. While DAEs provide
certain improvements in applications, it is known that the mean
squared errors used in their optimization cause over-smoothing
and clip off speech segments [4], [5], [6]. To address this
problem, adversarial structures [7] are incorporated into DAEs
to constrain the neural network and, thus, generate realistic
(i.e., unsmoothed) signals [8], [9], [10]. Pascual et al. proposed
a GAN-based end-to-end speech enhancement method called a
speech enhancement GAN (SEGAN), which generates signals

in waveforms [8]. Donahue et al. extended the SEGAN model
from a time domain to a TF domain, and demonstrated its
effectiveness using ASR experiments [10].

Inspired by these works, an attempt is made to introduce
an adversarial DAE as a post-filter of TF-masking to suppress
nonlinear distortions contained in enhanced signals. Note that
the missing components of the target source in the nonlin-
ear distortions play an dominant role in decreasing speech
intelligibility and ASR performance. However, it is difficult
to restore these missing components from enhanced signals,
even with the adversarial DAE and without any auxiliary
information on the missing components. In addition, it is
assumed that the distortion caused by nonlinear processing
depends significantly on the type of interfering noise. Thus,
auxiliary information on the target source and the interfering
noise are introduced in order to train the adversarial DAEs
(e.g., noise-aware training). Specifically, the estimated noise
and observed signal are used as an auxiliary reference signal,
and then as the input to a SEGAN, together with to the original
noise-corrupted input. Exploiting auxiliary reference signals
could be useful in improving the quality of enhanced speech
affected by nonlinear distortions.

The two main contributions of the present work are: 1)
showing the effectiveness of incorporating auxiliary informa-
tion on the target source and the noise into a SEGAN, and
2) showing the effectiveness of a SEGAN in attenuating the
nonlinear distortion of enhanced signals resulting from TF-
masking.

The rest of the paper is organized as follows. Section II
briefly explains conventional GAN-based speech enhance-
ment. Section III describes the proposed GAN-based post
filter of the nonlinear speech enhancement system. Section IV
demonstrates the effectiveness of the proposed system by
means of experiments on multichannel speech signals with an
interference source. Finally, Section V concludes the paper.

II. SPEECH ENHANCEMENT WITH GAN (SEGAN)

SEGAN [8] is a type of DAEs that gives a mapping from a
noise-corrupted signal to a denoised signal. By incorporating
an adversarial structure into the DAE, a SEGAN successfully
generates realistic denoised signals that are difficult to distin-
guish from actual clean signals.

A SEGAN is composed of two networks: a generator G and
a discriminator D. The generator is a denoising autoencoder
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composed of 11 one-dimensional convolutions of 1×31 filters
with a stride of two down-samples. The encoder receives a
one-second waveform (i.e., 16384 samples at 16 kHz), applies
11 convolutions, and increases the depth of the filter, layer by
layer. The result is an eight-dimensional feature map at the
bottle-neck with a depth of 1024. The time-length × depth
of the outputs of the layers are 16384× 1, 8192× 16, 4096×
32, 2048×32, 1024×64, 512×64, 256×128, 128×128, 64×
256, 32 × 256, 16 × 512, and 8 × 1024, respectively. Here, a
noise vector is concatenated with the output of the encoder.
The obtained latent vector is input to an up-sampling decoder,
composed of 11 one-dimensional deconvolutions that have the
same size filters and strides as those of the encoder. The
output of each deconvolution layer is concatenated with the
output of the homologous layer in the encoder. These skipped
connections contribute to passing on fine-grained, low-level
information from the encoder to the decoding stage [11],
making optimization easier [12]. The activation function used
in the encoder and decoder is a parametric rectified linear unit
(PReLU) [13]. The L1 loss between clean and denoised signals
is used to train the training DAEs.

The conditional discriminator extracts a feature-map from
the denoised signals obtained from the encoder to a clean
signal with convolution layers. The configurations of these
convolutions are the same as those of the encoder, except that
the activation function is a leaky ReLU instead of a PReLU. In
addition, virtual batch normalization [14] is applied after each
deconvolution to make the optimization faster. The 8 × 1024
dimensional feature map obtained after 11 convolution layers
is converted into an 8× 1 vector by a 1× 1 convolution, and
then aggregated into a single decision by a fully connected
layer.

In training phase, encoder and decoder are alternately op-
timized with following adversarial procedure. First, fixing the
parameter of generator G, the parameter of discriminator D
is optimized by minimizing following loss function:

LcGAN(D) = E(x,xc)∼pdata(x,xc)[(1−D(x,xc))
2]

+ Ez∼pz(z),x∼pdata(x)[(D(x, G(z,x)))2] (1)

where pdata(xc) denotes an empirical distribution over clean
signal xc, pdata(x,xc) denotes an empirical distribution over
a pair of observed signal x and clean signal xc, and pz(z)
denotes Gaussian distribution over a noise vector z. By mini-
mizing eq. (1), discriminator D try to discriminate whether the
input is clean or denoised signal. Then, fixing the parameters
of discriminator, the generator G is optimized by minimizing
following loss function:

LcGAN(G) = Ez∼pz(z),(x,xc)∼pdata(x,xc)[1−D(x, G(z,xc)))
2

+ λ||x−G(z,xc)||1] (2)

where λ is a weight between adversarial and reconstruction
losses. We set it to 100 for the training. By minimizing eq. (1),
the generator G try to generated denoised signals which is
difficult to distinguish from clean signals. After alternating

Fig. 1: Architecture of a speech enhancement generative ad-
versarial network (SEGAN) with an auxiliary reference input.

optimization of eqs. 1 and 2, Denoised signals of high quality
are obtained from the generator G.

III. NONLINEAR DISTORTION COMPENSATION USING A
SEGAN WITH AUXILIARY INPUTS

Enhanced speech with a nonlinear distortion is extracted
from microphone observations using TF masking, and then
input to a nonlinear distortion compensation system based
on a SEGAN with auxiliary inputs. Note that a mapping
from enhanced speech to clean speech is difficult to learn
because target source components may have been deleted from
the enhanced speech as a result of the nonlinear processing.
In addition, the characteristics of the distortion are closely
related to the type of interfering noise. Thus, noise information
could be effective in recovering these missing components. To
achieve this using a SEGAN, auxiliary reference signals on the
target source and the interfering noise are used as inputs to the
encoder, in addition to the enhanced signals. Figure 1 shows
the overall structure of the proposed SEGAN with auxiliary
reference inputs.

IV. SPEECH ENHANCEMENT EXPERIMENT

Experiments were used to compare the sound source sepa-
ration in order to demonstrate the effectiveness of exploiting
auxiliary information in SEGAN-based nonlinear distortion
compensation.

A. Experimental setup

1) Speech material: Figure 2 shows the experimental en-
vironment. The target source was placed in front of two
microphones, and the interference source was placed next
to the microphones (i.e., 90 degrees to the target). In this
experiment, sound source segregation based on estimating
incident angle of each Frequency component of Input signals
acquired by multiple microphones (SAFIA), configured to
enhance the front area of microphones using TF masking,
was applied in the speech enhancement stage. Nine types
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Fig. 2: Experimental environment with two microphones, a
target source, and an interference source.

TABLE I: Interfering noise recorded. Noise signals are se-
lected from the JEIDA noise database.

DB id noise type use
09 exhibition hall (booth) training
11 exhibition hall (aisle) training
13 station (concourse) training
14 station (aisle) training
18 factory (machine) training
20 factory (metal) training
26 street training
28 intersection training
30 crowd testing
47 elevator hall testing

of noise were chosen from the JEIDA noise corpus [15],
and the impulse responses between the sound source and the
microphones were recorded. Table I lists the types of noise
samples used for training and testing.

The noise-corrupted signals were synthesized by convolut-
ing the dry sources of speech with the impulse responses, and
then mixing the convolved speech with the noise at five signal-
to-noise ratios (SNRs) of -10, -5, 0, 5, and 10 dB. The dry
sources were 8000 utterances spoken by 78 females selected
from the JNAS [16], yielding about 50 different sentences for
each speaker and noise condition. To create a test set, 100
convolved spoken utterances were corrupted with two unseen
types of noise at five SNRs of -10, -5, 0, 5, and 10 dB. Note
that the combinations of experimental conditions in terms of
speakers, utterances, and noise types differed between training
and testing.

2) Speech enhancement: In the present experiment, a
phase-based SAFIA [17] was used in a nonlinear speech
enhancement system. Speech-dominant signals were obtained
by masking TF bins, where the difference between the phases
of two channels was higher than 0.1, while the noise-dominant
signals were extracted by masking the remaining bins.

3) Evaluation criteria: A signal distortion rate (SDR) be-
tween the estimated and the desired clean speech is calculated
using the BSS Eval toolbox [18] to evaluate how well the

TABLE II: Models evaluated.

system original input auxiliary reference input
observation noisy speech ——
SAFIA noisy speech ——
SEGAN noisy speech ——
SEGAN-oracle noisy speech matched (correct) noise
SEGAN-matched noisy speech matched (unsynchronized) noise
SEGAN-enhanced noisy speech enhanced noise (by SAFIA)
SAFIA-SEGAN enhanced voice ——
SAFIA-SEGAN-oracle enhanced voice matched (correct) noise
SAFIA-SEGAN-matched enhanced voice matched (unsynchronized) noise
SAFIA-SEGAN-enhanced enhanced voice enhanced noise (by SAFIA)
SAFIA-SEGAN-obs enhanced voice microphone observation

nonlinear distortion is compensated. In order to measure the
perceptual performance, a perceptual evaluation of speech
quality (PESQ), based on the ITU standard P.862 [19], is also
measured.

B. Experimental results

1) Effectiveness of using auxiliary information on the types
of noise: The effectiveness of using auxiliary information on
the types of noise as inputs to SEGAN was evaluated. In this
case, the following four models were compared:

• SEGAN: original SEGAN, without any reference signals;
• SEGAN-oracle: SEGAN using an oracle noise signal,

which is consistent with the convoluted signal from the
dry source, as the auxiliary input.

• SEGAN-matched: SEGAN using the matched noise,
which consists of non-speech segments extracted from
the oracle noise (i.e., the alignment is not correct), as the
auxiliary input.

• SEGAN-enhanced: SEGAN using the noise-dominant
signal obtained by SAFIA as an auxiliary reference input.

Figure 3 shows the speech enhancement performance ob-
tained by SEGANs with and without reference signals. The
figure shows that the SEGAN yielded a notable improvement
over the original noise-corrupted observation. In addition,
further improvements were obtained by introducing any kind
of reference signals. In particular, the best performance was
obtained when using an oracle noise signal as a reference
(SEGAN-oracle). This result indicates that a SEGAN could
learn a specific filter that calculated the differences between
observed and noise signals when oracle noise signals were
provided. However, the oracle noise is not available in prac-
tice. Instead, we obtain similar effects by using matched or
enhanced noises (SEGAN-matched and SEGAN-enhanced,
respectively).

Figure 4 depicts the spectrograms of the signals ob-
tained from each model. The figure shows that all signals
except SEGAN-enhanced generated redundant components
around the regions marked by circles. Thus, SEGAN-enhanced
achieves the best performance of the proposed models.

2) Effectiveness of SEGAN for nonlinear distortion compen-
sation: The effectiveness of SEGAN for nonlinear distortion
compensation was evaluated. In this case, the following five
models were compared:

1671

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



(a) PESQ (b) SDR

Fig. 3: Speech enhancement performance of SEGANs with and without auxiliary reference inputs, where PESQ and SDR were
averaged over 10 utterances for each condition.

(a) clean (b) observation

(c) SEGAN (d) SEGAN-oracle

(e) SEGAN-matched (e) SEGAN-enhanced

Fig. 4: Spectrograms of (a) a clean signal and (b) an observed
noise-corrupted signal, and enhanced signals obtained by (c)
an original SEGAN, (d) SEGAN-oracle, (e) SEGAN-matched,
and (f) SEGAN-enhanced.

• SAFIA-SEGAN: original SEGAN applied on enhanced
signals obtained from SAFIA, without any reference
signals;

• SAFIA-SEGAN-oracle: SAFIA-SEGAN using an oracle
noise signal as an auxiliary reference input.

• SAFIA-SEGAN-matched: SAFIA-SEGAN using the
matched noise as an auxiliary reference input.

• SAFIA-SEGAN-enhanced: SAFIA-SEGAN using the
noise-dominant signal as an auxiliary reference input.

• SAFIA-SEGAN-obs: SAFIA-SEGAN using the original
observation as an auxiliary reference input.

Figure 5 shows the speech enhancement performance ob-
tained by SAFIA-SEGANs with and without reference signals.
This figure shows that SAFIA-SEGAN yielded a notable
improvement over SAFIA. This result indicates that SEGAN is
effective in compensating for nonlinear distortion. Further im-
provements were obtained by introducing an enhanced signal
as a reference. On the other hand, PESQ and SDR deteriorated
when a matched signal was introduced as a reference (SAFIA-
SEGAN-matched). Note that SDR deteriorated, while PESQ
improved when an observation was introduced as a reference
(SAFIA-SEGAN-obs). This is because the removed compo-
nents could be recovered, but faint noise signals were added
to the output.

Figure 6 shows the spectrograms of the signals obtained
from each model. From this figure, we can see that SAFIA
removed too many components, generating the musical noise.
Furthermore, SAFIA-SEGAN contributed to attenuating the
nonlinear distortion, and introducing enhanced or observed
signals provided further improvements.

V. CONCLUSIONS

This study proposed a novel post filtering method using a
GAN to correct the nonlinear distortion caused by TF masking.
We showed that simply using a GAN on the output of TF
masking cannot reduce nonlinear distortion because some TF
components are missing after TF-masking. In order to solve
this problem, an estimated noise signal was concatenated with
an enhanced signal, and then used as the input to a GAN-based
autoencoder. Experiment results showed that the proposed
post-filtering method yielded improvements in speech quality
over TF masking.
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