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Abstract—This work investigates on explicitly utilizing utter-
ance information for fixed phrase speaker verification (SV). In
this scenario, the same phrase is spoken by the speakers during
the training and testing sessions. In other words, the speaker
model possesses both speaker as well as utterance information.
Therefore, there is a potential to improve the speaker character-
ization by compensating the utterance information. In this work,
we propose a framework to compensate the utterance informa-
tion, which is used to normalize the lexical content. A hidden
Markov model (HMM) based triphone model is considered as a
universal background model (UBM). It is used for adapting the
speaker-utterance model and the background utterance model
in the proposed utterance compensation framework. Given a
test utterance and a claimed speaker-utterance model, the UBM
as well as background utterance model is utilized for compen-
sating the average speaker information and the lexical content
information, respectively. The studies are conducted on RSR2015
database, which reveal the importance of the proposed utterance
compensation framework as compared to the framework without
utterance compensation.

I. INTRODUCTION

Speaker verification (SV) refers to verifying a speaker’s

claimed identity with reference to a given speech. It can be

broadly classified into text-dependent and text-independent

category [1], [2]. The former deals with production of same

lexical contents by the speakers during training and testing

sessions. Typically, fixed phrases of 2-3 seconds are con-

sidered for this kind of framework. On the contrary, there

is no restriction on lexical content to be produced in text-

independent SV, which therefore requires a larger amount of

speech data for modeling and verification of a trial to achieve

a benchmark performance. In case of real-world scenario,

computational time involved for speaker authentication is a

key factor. Thus, text-dependent SV emerges as a suitable

candidate for application oriented systems.

The text-dependent SV has gained attention in the com-

munity in recent years with the availability of standard large

databases like RSR2015 and RedDots [3], [4]. Earlier work

in this field focuses on dynamic time warping (DTW) based

temporal alignment technique that utilizes the sequence infor-

mation [5]. However, with the recent developments, different

advanced techniques are carried out in this domain. For

instance, a hierarchical multi-layer acoustic model (HiLAM)

is proposed based on Gaussian mixture model (GMM)-hidden

Markov model (HMM) architecture in [3]. This model cap-

tures speaker as well as lexical sequence information and

is found to perform better than the i-vector based speaker

modeling that dominates in text-independent SV [6]. Some

of the other novel frameworks proposed in this direction

include joint factor analysis (JFA) [7], i-vector/HMM [8] and

unsupervised HMM-universal background model (UBM) [9]

which have produced effective performance. Further, the use of

deep learning models, including deep neural network (DNN)

with restricted Boltzmann machine (RBM) and DNN/i-vector

have been studied for text-dependent SV in [10] and [11],

respectively.

As discussed, the text-dependent SV advocates on the usage

of same fixed phrase for verification of a trial. Thus, the

lexical content has a definite significance for this kind of

SV. The phonetic posteriorgram feature and model based

frameworks can utilize the lexical information for speaker

modeling as found in the literature [12], [13]. Along similar

directions, the speaker and lexical content have been modeled

jointly in terms of a HMM triphone model followed by

usage of different alignment strategies for an improved text-

dependent SV system in [14]. The authors of [15] have

performed utterance verification and SV separately followed

by their combination at decision and score level that improves

SV performance. Additionally, studies have shown that it is

effective to normalize the content information in case of text-

dependent SV. The work in [16] depicts that mismatch in

content severely degrades performance and posterior normal-

ization helps to deal with the mismatch. Further, the authors

of [17] represent the speakers in terms of phone classes for

i-vectors obtained for each senone unit. In [18], a content

normalization strategy is applied on the extraction of posterior

probabilities that improves performance. These studies show

that modeling lexical content with speaker modeling as well

as lexical content normalization, both helps in text-dependent

SV system. This motivated for exploring these two directions

in a common framework for fixed phrase SV.

In this work, the speaker-utterance models are created

using a HMM based triphone model to jointly capture the

speaker and utterance information as given in [14]. Further,

in order to compensate the lexical content information we

introduce a background utterance model. We then propose

an utterance compensation framework using the background

utterance model to normalize the lexical information from

speaker-utterance model for an improved fixed phrase SV

system. This kind of framework is suitable for real-world
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Fig. 1. Training phase for the proposed utterance compensation framework.

scenario, where different speakers have to enroll in a system

using multiple fixed phrases and during testing one of the

phrases is prompted for authentication. The RSR2015 database

having multiple fixed phrases and conditions is considered for

the studies. The novelty of this work is attributed in proposing

the framework of utterance compensation for text-dependent

SV systems.

The reminder of the paper is organized as follows. Sec-

tion II describes the architecture of the proposed utterance

compensation framework. In Section III, the details regarding

the development of the fixed phrase SV system is mentioned.

Section IV reports the results of the work carried out along

with a discussion. Finally, the paper in concluded in Section V.

II. UTTERANCE INFORMATION COMPENSATION

This section describes the proposed utterance compensation

framework. In this framework, to jointly capture the speaker

and utterance information, we first obtain the speaker-utterance

model as suggested in [14]. Then a background utterance

model is introduced to normalize the lexical content informa-

tion from the speaker-utterance model. Next we discuss the

training and testing phase of the proposed framework.

A. Training Phase

The lexical information in a speech signal can have different

levels of realization, such as phones, syllable or words. A

monophone model doesn’t take the phonetic context into

consideration during acoustic modeling. However, the triphone

model exploits the contextual phonetic information and hence,

it is more suitable for acoustic modeling [19]. In this regard, a

triphone based HMM is used as a UBM to capture the lexical

variations from a wide range of speakers. The adaptation is

performed with respect to this background model using a

maximum a posteriori (MAP) approach. The MAP adapta-

tion utilizes the use of prior knowledge about the acoustic
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Fig. 2. Testing phase for the proposed utterance compensation framework.

model. With the help of the prior informative knowledge and

background acoustic model, MAP adaptation can be used to

estimate the parameters from target acoustics data. In absence

of the prior information, the estimates of MAP are identical to

the maximum-likelihood (ML) approach [20]. The objective of

MAP adaptation is to maximize the posterior, that is achieved

in two steps, namely, computation of sufficient statistics and

adapt to the old statistics [21]. The first step computes the

sufficient statistics for the background data feature vector

sequence Obkg := {o1, o2, . . . oT },

µ̃jm =

∑T

t=1 γjm(t)ot
∑T

t=1 γjm(t)
(1)

where, j is the HMM state, m the mixture component index,

T is the number of feature vectors, and γjm(t) is the sufficient

statistics weight. In other words, γjm(t) is the posterior proba-

bility of data vector ot being in j th HMM state and mth mixture

component. The second step adapts the old statistics with the

relevance factor τ . In a practical scenario, the adaptation of

mean component is mostly considered in MAP adaptation.

In this work, we have used MAP adaptation on UBM

to derive the speaker-utterance model and background ut-

terance model. The mean parameters after MAP adaptation

for speaker-utterance model having feature vector sequence

Osu := {osu1 , osu2 , . . . osu
Tsu

} is expressed as:

µsu
jm =

τµ̃jm +
∑Tsu

t=1 γjm(t)osu
t

τ +
∑Tsu

t=1 γjm(t)
(2)

where, Tsu is the total number of feature vectors used for

the speaker-utterance model adaptation and µ̃jm is the old

statistics for mean vector obtained from the background

dataset as computed by Equation (1) that needs to be adapted.

Similarly, the mean parameters after MAP adaptation for

background utterance model having feature vector sequence

Outt := {outt1 , outt
2 , . . . outtTutt

} is expressed as:

µutt
jm =

τµ̃jm +
∑Tutt

t=1 γjm(t)outt
t

τ +
∑Tutt

t=1 γjm(t)
(3)
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where, Tutt is the total number of feature vectors used for the

background utterance model adaptation.

Figure 1 shows the block diagram of training phase for the

proposed utterance compensation framework. It shows that the

UBM is adapted to obtain speaker-utterance model using the

data (i.e., transcription and acoustic features) for a speaker-

utterance pair. Similarly, the background data is used to create

the background utterance model via MAP adaptation approach

as explained in this section. The background utterance model

is expected to capture the gross lexical information of the

particular phrase from a set of background speakers.

B. Testing Phase

During testing, the test feature vector sequence Ote :=
{ote1 , ote2 , . . . oteTte

} and speech transcript of the claimed model

W are used to compute log-likelihood scores with respect

to the three different acoustic HMMs. These are the claimed

speaker-utterance model (λsu), UBM (λubm) and background

utterance model (λutt) that are trained as described in Sec-

tion II-A. The scores obtained from each of these models are

used in combination for verification of a trial.

In consideration of background utterance model in the pro-

posed utterance compensation framework, the scoring criteria

for test data Ote against the claimed speaker-utterance model

having word transcription W is computed as follows:

SW
Ote = logP (Ote|λsu,W)

−
1

2

[

logP (Ote|λubm,W) + logP (Ote|λutt,W)
]

(4)

The likelihood scores are computed with respect to each

model by using the forward-backward algorithm to sum up

the likelihood values for each HMM state. For instance, the

log-likelihood with reference to the UBM for testing data Ote

can be computed as follows:

logP (Ote|λubm,W)

=
1

Ts

∑

t∈T

log
∑

j

P (otet |qubmt = j)P (ote
t |θj , qubmt = j) (5)

where, P (otet |qubmt = j) represents the state alignment prob-

ability for feature vector otet with respect to the j th HMM

state of the UBM and P (ote
t |θj , qubmt = j) represents the

likelihood computed using background parameters θj . Further,

T indicates the set of frames (time) for which the HMM-

state sequence aligns to the non-silence phone and Ts is

the total number of frames belonging to non-silence phones.

The silence does not carry any information related to either

speaker or lexical content and rather the likelihood values

associated with the silence frames create confusion in SV.

Similarly, the log-likelihood against speaker-utterance model

(i.e., logP (Ote|λsu,W)) and background utterance model

(i.e., logP (Ote|λutt,W)) can be computed to obtain the final

score for decision making as given by Equation (4). In the

absence of the background utterance model, the proposed

framework resembles to the joint speaker-utterance framework.

Figure 2 shows the block diagram of testing phase for the

proposed utterance compensation framework. The speech tran-

scription of the claimed speaker-utterance model and acoustic

feature vectors of the test utterance are fed to three different

models to compute respective likelihood scores as shown in

Figure 2. The scores obtained for speaker-utterance model is

compared against the scores from UBM and the background

utterance model. To balance the compensation effect between

the UBM and the background utterance model, we used equal

contribution from them by averaging their scores. The details

regarding the parameters and experimental setup are described

in the next section.

III. SYSTEM DESCRIPTION

In this section, the details of the SV system developed in this

work are mentioned. The database, front-end processing and

experimental setup are described in the following subsections.

A. Database

The RSR2015 database [3] is used for conducting the

studies in this work. It contains a population of 300 speakers

involving 157 male and 143 female speakers. Based on the

type of phrases used, the database is categorized in three parts,

namely, Part I, Part II and Part III. The Part I subset consists

of 30 different fixed phrases that are of duration around 3-4

seconds. The 30 fixed short command based phrases are kept

in Part II that ranges in 1-2 seconds in duration. Finally, the

13 random digit sequence based phrases are grouped under

Part III. Each phrase is spoken for 9 different sessions by all

the speakers, out of which sessions 1st, 4th and 7th are used

for training. The remaining sessions are used for evaluating

the performance.

Further, the database is divided in three different sets

namely, background, development and evaluation sets. The

background set is used for developing background models,

whereas the development and evaluation sets are used to

evaluate the performance. There are 50 male and 47 female

speakers in the background set, 50 male and 47 female

speakers in development set and the remaining 57 male and 49

female speakers are included in evaluation set. Additionally,

the database has three different trial categories, namely, Im-

postor Correct, Target Wrong and Impostor Wrong. However,

this work focuses on Impostor Correct category, where the

impostors utter the correct phrase for validating a claim. This

has been chosen as this condition is suitable in a practical

cooperative scenario and represents the reply attack scenario

as well.

B. Front-end Processing

The short term processing is performed on speech utterances

from the RSR2015 database with frame size of 20 ms and a

shift of 10 ms. 60-dimensional (20-base + 20-∆ + 20-∆∆)

mel frequency cepstral coefficient (MFCC) features including

energy coefficient are extracted for every frame considering 23

logarithmically placed mel filters. There is no voice activity

detection applied as the SV framework used in this work
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TABLE I
PERFORMANCE IN TERMS OF EER (%) FOR DIFFERENT FRAMEWORKS ON

PART I OF RSR2015 DATABASE.

System
Development Set Evaluation Set

Female Male Female Male

HiLAM [3] 3.24 3.69 2.96 2.47

Joint Speaker-utterance 1.60 2.05 1.01 1.39

Utterance Compensation 1.64 1.46 0.73 0.96

Utterance Compensation
1.46 1.46 0.72 0.96

with u
f

considers information from non-silence frames after HMM

state alignment as mentioned in Section II-B. The features

of each utterance are normalized in the cepstral domain with

cepstral mean and variance normalization (CMVN) [5].

C. Experimental Setup

As discussed in Section II, the UBM is a triphone based

HMM. This has been trained using the entire background

set of RSR2015 database except the first session based ut-

terances from different speakers for each phrase. These first

session based utterances are kept aside for the creation of

background utterance model. The rationale behind this is to

avoid overlap of data considered for utterance model creation

with UBM. Additionally, we would like to highlight that the

background utterance model is created from the background

data of RSR2015 database, which does not have any overlap

of speakers with development and evaluation set. Each phone

is modeled as a left-to-right HMM (Bakis model) with three

emitting states and total number of Gaussian components

is kept as 512. In this work, we used CMU pronunciation

dictionary converting speech transcription into sequence of

phones. The phone set comprises of 39 phones and 1 silence

phone. The number of tied states (or senones) obtained after

decision tree clustering is 429. We have followed the standard

WSJ recipe of Kaldi to create the UBM, which is a triphone

based HMM [22].

It is to be noted that gender dependent modeling is per-

formed to have separate systems for male and female speakers.

The trained UBM is then used to create speaker-utterance

model and background utterance model for Part I and Part

II of RSR2015 database as described in Section II-A. Given a

test trial and a claimed speaker-utterance model, the scoring

is performed as mentioned in Section II-B. The evaluation

of the system performance on RSR2015 database follows the

standard protocol depicted in [3].

IV. RESULTS AND DISCUSSION

This section reports the results carried out with respect to

the current work along with a discussion. The HiLAM system

described in [3] is considered as a common reference system

for comparison and results are cited from the same. In addition,

we consider the joint speaker-utterance system that considers

only speaker-utterance model and UBM as suggested in [14].

This framework is different from the HiLAM [3] in terms

of HMM based modeling. In joint speaker-utterance system,

the speaker-utterance model a triphone based HMM obtained

with transcription, whereas the HiLAM does not use any

TABLE II
PERFORMANCE IN TERMS OF EER (%) FOR DIFFERENT FRAMEWORKS ON

PART II OF RSR2015 DATABASE.

System
Development Set Evaluation Set

Female Male Female Male

HiLAM [3] 6.66 10.58 7.95 8.38

Joint Speaker-utterance 4.10 4.92 3.24 4.26

Utterance Compensation 4.03 4.16 2.85 3.61

Utterance Compensation
3.86 4.16 2.79 3.61

with u
f

transcription. In addition, HMM parameters are adapted from

GMM-UBM in the case of HiLAM. The proposed utterance

compensation framework introduces a background utterance

model to normalize the lexical information from joint speaker-

utterance system. Table I shows the performance for the stated

frameworks on Part I of RSR2015 database in terms of equal

error rate (EER). It can be observed that the joint speaker-

utterance framework outperforms the conventional HiLAM.

The possible reason behind this can be that the triphone based

HMM used in joint speaker-utterance system captures speaker-

specific information in a better way than the HMM involved in

HiLAM. Additionally, the utterance compensation framework

further enhances the performance, except one case for female

development set, showing its significance for fixed phrase SV.

The studies are extended to carry out on Part II of RSR2015

database that deals with short commands of 1-2 seconds.

Table II shows the performance for different frameworks on

Part II of RSR2015 database considered in this work. The

results under this database subset also show the effectiveness

of the utterance compensation framework. Further, it is to be

noted that the difference in performance between HiLAM and

the proposed framework is more in case of Part II subset

having short commands. This reflects that the importance of

the utterance information compensation is even more for fixed

phrases of very short duration.

It is observed from Table I and Table II that the contri-

bution of the proposed utterance compensation framework is

relatively less for the results obtained on the development set

for female speakers in case of Part I and Part II subsets. As

discussed in Section II-B, equal weightage has been applied

to UBM and background utterance model during final score

computation for decision making. However, we argue that

there may be a better strategy to have weighted compensation

of these models. In this regard, we introduce an utterance

factor (uf ), that is learned on the development set and then it

is applied on the evaluation set. The Equation (4) is modified

to include the utterance factor as follows:

SW

Ote = logP (Ote|λsu,W)

−
[

(1 − u
f
) logP (O

te
|λubm,W) + u

f
logP (O

te
|λutt,W)

] (6)

where, the utterance factor uf is a scalar that ranges between

0 and 1. Its optimal value u
f
opt is obtained in steps of 0.1 to

have the least cost.

The experiments on development set are performed to

compute the uf for both male and female subsets of RSR2015

database and then applied on the evaluation set. An utterance
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factor of u
f
opt = 0.5 is obtained for the male set, whereas

for female speakers u
f
opt = 0.3. Thus, it shows that although

for male speakers the equal compensation strategy is optimal,

for female speakers the weighted combination with utterance

factor is found to be optimal for minimum cost. The last row

of Table I and Table II represents the results associated with

utterance factor based hypothesis to have improved results

for female speakers. The proposed utterance compensation

framework is beneficial for practical systems that has multiple

fixed phrases for enrollment and randomly one out of them

is used for verification of a claim. In this study, we used

GMM/HMM framework to derive state posterior probability.

The same can be extended to DNN for deriving the posterior

probability as used in [13] for utterance compensation frame-

work. Additionally, the future work will focus on extending

the studies presented in this work for prompted digit sequence

based SV.

V. CONCLUSIONS

We propose a novel framework to compensate the lexical

content from speaker-utterance models in a fixed phrase based

SV. The lexical content is found to carry critical information

for text-dependent SV. In order to utilize this information,

firstly a speaker-utterance model is created via adaptation

from a HMM based triphone model. We then hypothesize

that compensating the utterance information can improve the

SV performance. A background utterance model is created for

every fixed phrase from the background data to support the hy-

pothesis. During testing, the test utterance is compared to the

claimed speaker-utterance model along with the UBM as well

as background utterance model. The background utterance

model is used to normalize the average utterance information

for improved speaker characterization in the proposed utter-

ance compensation framework. The studies are conducted on

RSR2015 database that portray the importance of the utterance

compensation for fixed phrase SV. Furthermore, it is observed

that the proposed framework is more effective towards short

commands compared to the existing systems in the domain of

text-dependent SV.
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