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Abstract—Throat microphones are more robust to 

environmental noises than usual acoustic microphones such as 

close-talk microphones because they detect speech signals through 

skin vibrations rather than by air transmission. Throat 

microphones, however, cannot be used in conventional speech 

recognition systems because their acoustic characteristics are 

much different from those of the acoustic microphones.  In this 

study, we propose a deep neural network (DNN)-based feature 

mapping method for throat microphone speech recognition.  To 

utilize a large amount of training data recorded by acoustic 

microphones and effectively reduce the acoustic mismatch 

between the throat and acoustic microphones, we tried to use the 

bottleneck features to mediate between them.  Evaluation results 

for a large-vocabulary speech recognition task of Japanese free 

conversation revealed that the proposed system had a 45.8% 

lower character error rate (75.5% → 40.9%) than the typical 

MFCC system trained from the acoustic microphone data. 

I. INTRODUCTION 

   Deep neural networks (DNN) with high discrimination 

performance have recently been applied to speech recognition, 

and the recognition accuracy was reported to be almost the 

same level as that of a human’s transcription of an English 

telephone conversation (Switchboard) [1]. However, 

recognition performance is still much degraded in highly non-

stationary noise environments and needs to be further improved.  

As a method to suppress external noise, a throat microphone, 

which closely adheres to the throat and receives the vibrations 

directly from the skin by the piezo element, can be used [2][3].  

It is more robust to external noise than a standard acoustic 

microphone, which receives vibrations of air.  However, there 

is a big difference in acoustic characteristics between throat 

and acoustic microphones.  Therefore, the recognition accuracy 

of a throat microphone deteriorates when using an acoustic 

model trained by speech collected with an acoustic microphone 

because of acoustic mismatch. Furthermore, it is difficult to 

train acoustic models from scratch with the speech of a throat 

microphone because it can use only a limited amount of data. 

To solve this acoustic mismatch of the throat microphone in 

speech recognition, various methods have been proposed [4]-

[6].  Lin et al. [6] proposed a DNN-based feature mapping from 

the throat microphone to the acoustic microphone by using 

acoustic models of a conventional acoustic microphone.  Its 

feature transformation is from the mel-frequency cepstral 

coefficient (MFCC) of the throat microphone to the MFCC of 

the acoustic microphone. 

In distant-talking speech-recognition task, Hiwaman et al. 

[7] proposed a method of DNN-based feature mapping from 

the MFCC feature space of a single distant microphone (SDM) 

to the bottleneck feature space of an individual head 

microphone (IHM) to suppress acoustic mismatch between 

IHM and SDM.  The bottleneck feature (BNF) is extracted 

from the bottleneck layer of DNN that is trained to discriminate 

phonemes.  The BNF has intrinsic information of phonemes 

and is more effective for phoneme discrimination than 

conventional features such as MFCC.  In the work of Hiwaman 

et al. [7], the weights of DNN for feature mapping were 

initialized to the weights of DNN for extracting the BNF of an 

IHM and then fine-tuned with the MFCC of an SDM as the 

input signal and the BNF of the IHM as the supervised signal.  

Das et al. [8] reported that a DNN that was trained with English 

alignments and then retrained with a limited number of Turkish 

alignments had higher Turkish phoneme discrimination 

accuracy than a DNN that was randomly initialized and then 

trained with only Turkish alignments.  Hence, feature mapping 

accuracy was assumed to be improved by devising the initial 

weights of DNN as done by Hiwaman et al. [7]. 

Inspired by the Hiwaman’s work, we introduce the BNF-

based feature mapping approach into throat-microphone 

speech-recognition task.  In this study, we propose a DNN-

based feature mapping from the MFCC of throat-microphone 

speech to the BNF of acoustic-microphone speech. By using 

this feature mapping as a pre-processing, a normal acoustic 

model trained from large-sized acoustic-microphone data can 

be applied on the following recognition process.  Furthermore, 

we study an initialization technique of DNN to improve the 

feature mapping.  

The rest of this paper is organized as follows.  Section 2 

describes the method of DNN-based feature mapping for throat 

microphone speech recognition, Section 3 describes conditions 

and results of recognition experiments in a Japanese large 

vocabulary continuous speech recognition (LVCSR) task, and 

Section 4 discusses conclusions and future works. 

II. PROPOSED METHOD 

A. Overview of our throat mic. speech recognition system 

   Fig. 1 shows the block diagram of the throat-microphone 

speech-recognition system.  First, this system extracts a 13-

dimensional MFCC of throat microphone input by applying 
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cepstrum mean normalization (CMN) and then splices 4 frames 

on each side of the current frame. After that, the current frame 

is compressed to 40 dimensions with linear discriminant 

analysis (LDA), and maximum linear likelihood 

transformation (MLLT) is applied.  Then, feature-space 

maximum linear likelihood regression (fMLLR) is also applied.  

In this study, we refer to the 40-dimensional feature vector as 

throat microphone (TM)-MFCC. To estimate the fMLLR 

transform, the alignment information of the throat microphone 

is obtained by using a GMM-HMM trained only with throat 

microphone speeches. Next, the system carries out the feature 

mapping from the 440-dimentional feature vector obtained by 

splicing ±5 frames of the TM-MFCC to the BNF of the acoustic 

microphone (AM-BNF). The feature vector estimated by the 

DNN-based mapping is input to the recognition system that has 

the GMM-HMM trained by AM-BNFs taken from a typical 

speech corpus. 

B. Training of DNN for extracting BNF 

   The architecture of the DNN for extracting the BNF is shown 

in Fig. 2.  The acoustic microphone (AM)-MFCC is extracted 

from speech data of the acoustic microphone as well as the TM-

MFCC in pre-processing.  Then the 440-dimensional features 

obtained by splicing ±5 frames of the AM-MFCC are used for 

training of the DNN as an input signal. The state alignments of 

the acoustic-microphone speeches are estimated by using a 

GMM-HMM trained only with the AM-MFCCs and used for 

training of the DNN as a supervised signal.  The DNN is pre-

trained by stacked denoising auto-encoders (SdA) and fine-

tuned. Then a 42-dimentional BNF is estimated from the 

middle layer of the DNN.  

 

C. Training of DNN for feature mapping 

Fig. 3 shows the training process of DNN for the feature 

mapping (FM-DNN). The AM-BNF and TM-MFCC are 

extracted from parallel data simultaneously recorded by the 

acoustic and throat microphones.  The input signal for training 

of the FM-DNN is the 440-dimensional features obtained by 

splicing ±5 frames of the TM-MFCC, and the supervised signal 

is the AM-BNF.  The FM-DNN has the same architecture as 

the DNN for extracting the BNF cut up to the bottleneck layer 

as shown in Fig. 2.  The weights of the FM-DNN are initialized 

to the weights of the DNN for extracting BNF and fine-tuned.  

 

Fig. 3   Pipeline for training the DNN for feature mapping (TM: Throat microphone, AM: Acoustic microphone, FM-DNN: DNN for feature mapping) 

 

 

Fig. 1   Block diagram of our throat-microphone speech-recognition system (TM: throat microphone, AM: acoustic microphone)  

 

Fig. 2   Architectures of DNN for extracting BNF and for feature mapping 
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III. EXPERIMENTS 

A. Datasets 

 Parallel data used for training feature mapping was recorded 

simultaneously with a throat microphone (NANZU SH – 12jK) 

and an acoustic microphone (Sony EXM - CS 3) using a multi-

track recorder (ZOOM R24).  The sampling rate of the audio 

data is 16,000 Hz.  We recorded 8 male speakers reading 504 

Japanese phoneme balanced sentences for about 3 hours.  The 

throat microphone speech data of this parallel data was also 

used for training the GMM-HMM of the throat microphone. 

As test data, free conversations of 10 male speakers for about 

19 minutes were recorded.  The contents of these free 

conversations were group discussions.  Each group consisted 

of three people.  The speech data has less external noise 

because the conversations were recorded in a quiet 

environment. The speakers of the test data are not included in 

the training data. 

Approximately 240 hours from the Corpus of Spontaneous 

Japanese (CSJ) were used for training data of the GMM-HMM 

of the acoustic microphone, and about 114 hours from the CSJ 

were used for training the DNN to extract the BNF. 

 

B. Experimental conditions 

    Kaldi [9] was used for feature extraction, acoustic model 

training, and recognition experiments.  Kaldi+PDNN [10] was 

also used to train the DNN to extract the BNF.  In this training, 

the mini batch size was set to 256, the initial learning rate to 

0.01, and number of iterations to 8. Keras was used to train the 

FM-DNN.  In this, the mini batch size was set to 4096, and the 

initial learning rate to 0.001, and number of iterations to 100. 

The 3-gram language model was used and was generated from 

transcripts of the CSJ. 

 

C. Experimental results 

Three types of experiments were conducted to evaluate the 

effectiveness of the proposed throat-microphone speech-

recognition system. 

C-1.  COMPARISON WITH CONVENTIONAL SYSTEMS 

To evaluate the performances of four conventional systems 

and the proposed system, we conducted five recognition 

experiments.  

 

(1) A system using the TM-MFCC as the input feature and a 

GMM-HMM trained with the AM-MFCC (AM GMM-

HMM) as an acoustic model 

(2) A system using the BNF of the throat microphone as the 

input feature and a GMM-HMM trained with the AM-

BNF (AM Tandem) as an acoustic model 

(3) A system using the TM-MFCC as the input feature and a 

GMM-HMM trained with the TM-MFCC (TM GMM-

HMM) as an acoustic model 

(4) A system using the BNF of the throat microphone as the 

input feature and a GMM-HMM trained with BNF of the 

throat microphone (TM Tandem) as an acoustic model 

(5) A system using the feature mapped by the DNN as the 

input feature and a GMM-HMM trained with the AM-

BNF (AM Tandem) as an acoustic model (proposed 

system) 

 

   Each system recognized some speech data of the throat 

microphone.  The BNFs input to systems (2) and (4) are 

extracted from the DNNs trained with the acoustic and throat 

microphones, respectively.  In these experiments, the FM-DNN 

is randomly initialized. Table I shows experimental results.  

System (1) had a character error rate (CER) of 74.6% because 

of a big acoustic mismatch between the acoustic and throat 

microphones.  Furthermore, system (2) had a 96.6% CER 

because the DNN trained with the AM-MFCC cannot 

transform the TM-MFCC accurately into a feature space of the 

AM-BNF.  Meanwhile, system (5) shows feature mapping 

could extract features that suppress the mismatch with the AM-

BNF.  The GMM-HMM trained with a large amount of the 

acoustic microphone’s speech data has higher phoneme 

discrimination performance than the GMM-HMM trained with 

only about 3 hours of throat microphone data.  As a result, the 

proposed system (5) had higher recognition accuracy than 

systems (3) and (4). 

  C-2.  FEATURE MAPPING METHODS 

To verify the effectiveness of the proposed feature mapping 

from the TM-MFCC to AM-BNF, we experimented with four 

mapping methods as shown in Table II.  TM-BNF is extracted 

from DNN trained only with throat microphone.  

In all methods, the architecture of hidden layers of the FM-

DNN is the same as that shown in Fig. 2, and the weights of 

FM-DNN were randomly initialized.  In speech recognition, 

the input feature is obtained from the mapped feature by 

applying CMN, LDA, and fMLLR as well as the TM-MFCC. 

When the feature input to the FM-DNN is the MFCC, the 

number of units of the input layer is 440 in order to input the 

feature obtained by splicing ±5 frames of the TM-MFCC. For 

the same reason, when the feature input to the FM-DNN is the 

BNF, the number of units of the input layer is 462.  When the 

output feature is the MFCC, the supervised signal is a 13-

dimentional MFCC of the acoustic microphone by applying 

CMN and hence the number of units of the output layer is 13.  

The acoustic model is the GMM-HMM trained with the AM-

MFCC. Meanwhile, when the output feature is the BNF, the 

supervised signal is a 42-dimentional BNF of the acoustic 

microphone by applying CMN and hence the number of units 

TABLE   I 

CHARACTER ERROR RATE (CER) OF CONVENTIONAL METHODS AND 

PROPOSED METHOD 

 

 Acoustic model Type of input feature CER [%] 

(1) AM GMM-HMM MFCC 74.6 

(2) AM Tandem BNF 96.6 

(3) TM GMM-HMM MFCC 52.4 

(4) TM Tandem BNF 48.9 

(5) AM Tandem 

(Proposed) 

Mapped feature 42.2 
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of output layer is 42.  The acoustic model is the GMM-HMM 

trained with the AM-BNF.  Table II shows experimental results.  

In the results, the proposed method (4) achieved a lower CER 

than the conventional feature mapping from the TM-MFCC to 

the MFCC of the acoustic microphone [6].  Methods (2) and 

(3) using the TM-BNF as the input signal had higher CERs than 

methods (1) and (4) using the TM-MFCC. 

C-3.  INITIALIZATION OF FM-DNN  

To assess whether initializing the weights of the FM-DNN 

reduces CER, we experimented with three initialization 

methods.  

 

(1) Random initialization (Random) 

(2) Weights of DNN for extracting the BNF of the throat 

microphone (TM - DNN)  

(3) Weights of DNN for extracting the BNF of the acoustic 

microphone (AM - DNN) (Proposed) 

 

We conducted recognition experiments using features 

mapped by each DNN. The acoustic model is the GMM-HMM 

trained by the AM-BNF. Table III shows the experimental 

results.  The accuracy of feature mapping was improved by 

initializing the weights of the FM-DNN using the weight of the 

DNN for extracting the BNF instead of initializing randomly. 

Finally, by using the proposed method (3), the CER was 

reduced to 40.9% by initializing with the weight of the DNN 

for extracting the AM-BNF. 

   From the above, the proposed method had a lower CER 

(40.9%) than the conventional methods.  On the other hand, in 

the results of recognition of acoustic microphone speech data 

recorded simultaneously with the test data using the GMM-

HMM trained with the AM-MFCC, the CER was 29.0%. When 

the test data with less external noise was used, the throat 

microphone still had inferior recognition accuracy to the 

acoustic microphone. 

 

IV. CONCLUSION 

 In this study, we proposed DNN-based feature mapping 

from the MFCC of a throat microphone to the BNF of an 

acoustic microphone by using an acoustic model trained by a 

large amount of the BNF of an acoustic microphone.  The 

proposed method performed much better than the acoustic 

models trained only with speech data of a throat microphone or 

an acoustic microphone.  Moreover, our feature mapping 

method achieved higher recognition accuracy than the 

conventional feature mapping method that transforms the 

MFCC of the throat microphone into the MFCC of the acoustic 

microphone.  We also found that feature mapping accuracy was 

improved by initializing the weights of the FM-DNN using the 

weight of the DNN for extracting the AM-BNF instead of 

initializing randomly.  For future work, we will try to improve 

feature mapping accuracy and conduct experiments in noisy 

environments. 

 

ACKNOWLEDGMENTS 

This work was supported by JSPS KAKENHI Grant 

Numbers (16H01817) and (16K01543). 

REFERENCES 

[1] G. Saon et al., “English Conversational Telephone Speech 

Recognition by Humans and Machines,” Proc. Interspeech 2017, 

pp. 132–136, 2017.  

[2] T. Dekens, W. Verhelst, F. Capman, F. Beaugendre, “Improved 

Speech Recognition in Noisy Environments by Using a Throat 

Microphone for Accurate Voicing Detection,” Signal Processing 

Conference, pp. 1978–1982, 2010. 

[3] W. Amano, K. Noguchi, R. Takeda, K. Honma, “Automatic 

Speech Recognition Using Throat Microphone Under Highly-

Noisy Environments,” journal of EICA, pp. 182–186, 2014, in 

Japanese 

[4] A. Shahina, B. Yegnanarayana, “Mapping Speech Spectra from 

Throat Microphone to Close-Speaking Microphone: A Neural 

Network Approach,” EURASIP Journal on Advances in Signal 

Processing, vol. 2007, no. 2, pp. 1–10, 2007.  

[5] K. Vijayan K. Sri Rama Murty, “Comparative Study of Spectral 

Mapping Techniques for Enhancement of Throat Microphone 

Speech,” Twentieth National Conference on Communications, pp. 

1–5, 2014.  

[6] S. Lin, T. Tsunakawa, M. Nishida, M. Nishimura, “DNN-based 

Feature Transformation for Speech Recognition Using Throat 

Microphone,” APSIPA ASC 2017, pp. 596–599, 2017. 

[7] I. Himawan et al., "Learning Feature Mapping Using Deep 

Neural Network Bottleneck Features for Distant Large 

Vocabulary Speech Recognition," ICASSP, pp. 4540–4544, 2015. 

[8] A. Das, M. Hasegawa-Johnson, “Cross-lingual Transfer Learning 

during Supervised Training in Low Resource Scenarios,” 

INTERSPEECH, pp. 3531–3535, 2015. 

[9] D. Povey et al., “The Kaldi Speech Recognition Toolkit,” IEEE 

2011 Workshop on Automatic Speech Recognition and 

Understanding. IEEE Signal Processing Society, 2011 

[10] Y. Miao, "Kaldi+PDNN: Building DNN-based ASR Systems 

with Kaldi and PDNN," arXiv:1401.6984, 2014. 

TABLE   III 

CHARACTER ERROR RATE (CER) OF USING FEATURE ESTIMATED BY FM-
DNN INITIALIZED FOR EACH METHOD 

 

Initialization method CER [%] 

(1) Random  42.2 

(2) TM-DNN 41.8 

(3) AM-DNN (Proposed) 40.9 

 

TABLE   II 

CHARACTER ERROR RATE (CER) FOR EACH METHOD OF FEATURE MAPPING 

FROM MFCC OR BNF OF THROAT MICROPHONE TO MFCC OR BNF OF 

ACOUSTIC MICROPHONE 

 

Feature mapping method CER [%] 

(1) TM-MFCC to AM-MFCC 48.0 

(2) TM-BNF to AM-MFCC 59.1 

(3) TM-BNF to AM-BNF 51.1 

(4) TM-MFCC to AM-BNF (Proposed) 42.2 
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