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Abstract—Voice Conversion (VC) requires an alignment of
the spectral features before learning the mapping function, due
to the speaking rate variations across the source and target
speakers. To address this issue, the idea of training two parallel
networks with the use of speaker-independent representation was
proposed. In this paper, we explore the unsupervised Gaussian
Mixture Model (GMM) posteriorgram as a speaker-independent
representation. However, in the GMM posteriorgram, the same
phonetic information gets spread across more than one compo-
nent due to the speaking style variations across the speakers.
In particular, this spread is limited to a group of neighboring
components for a given phone. We propose to share the posterior
probability of each component with the limited number of
neighboring components that are sorted based on the Kullback-
Leibler (KL) divergence. We propose to employ a Deep Neural
Network (DNN) and a Generative Adversarial Network (GAN)-
based framework to measure the effectiveness of the proposed
Inter Mixture Weighted GMM (IMW GMM) posteriorgram
on the Voice Conversion Challenge (VCC) 2016 database. The
relative improvement of 13.73 %, and 5.25 % is obtained
with the proposed IMW GMM posteriorgram w.r.t. the GMM
posteriorgram for the speech quality and the speaker similarity
of the converted voices, respectively.

Index Terms: IMW GMM Posteriorgram, generative adver-
sarial network, voice conversion.

I. INTRODUCTION

Voice Conversion (VC) is a technique that maps perceived
speaker identity presents in the speech signal uttered by a
source speaker to a particular target speaker without changing
the message content of the signal [1], [2]. Conventional
approaches in the VC, require the aligned spectral features
from both the source and the target speakers, due to the
speaking rate variations across the speakers (i.e., interspeaker
variations) and speech rate variations within the speaker (i.e.,
intraspeaker variations). In both parallel and non-parallel VC
tasks, it has been shown that the accuracy of the alignment
between source and target speakers’ data, impacts the quality
of the converted voices [3]–[11]. To avoid the issues related to
the alignment, several adaptation [12], [13] and the generation
model-based VC techniques have been proposed [14]–[19].

Recently, Generative Adversarial Network (GAN)-based
architectures have shown notable improvements in the area
of, Speech Enhancement (SE) [20]–[24], VC [14], [16]–[18],
[25], and cross-domain speech conversion techniques [26],
[27]. Such a VC framework maps the spectral representations
from the source speaker to the speaker-independent latent

representations and this representation is further used to gen-
erate the more realistic target spectral features using the GAN
[14]. Earlier approaches employ the variational autoencoded
features, or the Phonetic Posteriorgram (PPG) obtained via
developing Automatic Speech Recognition (ASR) [14], [28],
[29]. However, developing the ASR requires a large amount of
transcribed speech data. In addition, such ASR will be more
robust if it also includes training data from both the source
and the target speakers, which is difficult to obtain in realistic
VC scenarios.

In this work, we propose to explore unsupervised techniques
to learn the speaker-independent representations. In particular,
unsupervised Gaussian Mixture Model posteriorgram (GMM-
PG) are very popular speaker-independent representations in
the area of Query-by-Example Spoken Term Detection (QbE-
STD) [30]–[34]. However, the key issue with the conventional
GMM-PG is that the same phone gets spread across more
than one component (due to the speaking style variations
across the speakers) [35]. In particular, we observe that this
spread is limited to a group of neighboring components for
a given phone. Hence, we propose Inter Mixture Weighted
GMM-PG (i.e., IMW GMM-PG), that shares the posterior
probability of each mixture in GMM-PG with the limited
number of neighboring mixture that are sorted based on the
Kullback-Leibler (KL) divergence. In this paper, we mea-
sure the effectiveness of the proposed unsupervised speaker-
independent feature representation, namely, IMW GMM-PG
over the conventional GMM-PG with the two-stage Deep
Neural Network (DNN) and the GAN-based VC framework.
The experiments are performed on the publicly available Voice
Conversion Challenge (VCC) 2016 database. The detailed
subjective and objective evaluations have also been presented
for the developed VC systems.

II. SPEAKER-INDEPENDENT REPRESENTATIONS

A. Analysis of speaker-independent features

Posteriorgram, such as Gaussian posteriorgram, when
trained on multispeaker data, are speaker-independent to a
certain extent [30], [35]. The posterior probability P (Ck|ot)
(for kth cluster Ck, and ot feature frame) of GMM-PG can
be computed as follows [30], [36]:

P (Ck|ot) =
ωkN (ot;µk,Σk)∑N
j=1 ωjN (ot;µj ,Σj)

, (1)
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Fig. 1: Functional block diagram of proposed IMW GMM method for VC. It can be inferred from the circled regions that the
probability is shared across components in IMW GMM-PG than in GMM-PG.

where N is the number of GMM components, ωk, µk and
Σk are the weights, mean vectors and covariance matrices,
respectively, for the kth Gaussian components (1 ≤ k ≤
N ). The GMM parameters are estimated using Expectation-
Maximization (EM) algorithm [37]. In this paper, entire TIMIT
database is used to train the GMM. In particular, we have
analyzed frame-level GMM-PG features for three randomly
selected speakers from the TIMIT database. For selected
phones, we present in Table I the indices of those components,
that are having higher probabilities in the decreasing order
from the top, for a specific speaker. An ideal posterior speaker-
independent representation should contain distinct phonetic
information in each component, irrespective of the speaker.
However, in the case of GMM-PG, the phonetic information
gets spread across the components.

From Table I, it can be observed that the components that
share the frame posteriorgram values are almost the same
for one user and for one phone. In case of phones, for
example, ‘aa ’, the found component labels 46, 53, 26, 40
are representing one particular phone, across the speakers.
However, while observing the parameters (i.e., mean and
variance) of these components, we observed the distance
calculated by KL-divergence is lesser w.r.t. each other. This
means that the feature vectors for a phone lies closer across
the speakers even though they cannot be clustered to the
same component. Furthermore, it should be noted that across
the different speakers (as shown in Table I), prominent (i.e.,
highest posterior probability) components remains similar at
most of the cases. Though they are similar, order of promi-
nence varies. This explains why the prominent component of a
phone, for example, /iy/ is 25th component for male speaker,
while for female speaker, it is 29th component. While using

conventional GMM-PG matching methods, this may lead to
many false recognition or increased mismatch [35]. To address
this issue, we propose IMW GMM-PG, a modification to the
GMM-PG, and is discussed in detail in the next sub-Section.

TABLE I: Prominent component variation in GMM posterior-
gram, 64 dimensions, for selected phones and speakers from
TIMIT database

Speaker Selected Phonetic Classes
aa iy ow l m dh f sh p t

Male1
46 25 44 51 3 54 14 1 7 15
53 58 56 44 19 63 35 35 15 28
26 29 51 3 23 31 1 9 9 7

Female1
46 29 37 44 3 15 13 14 4 7
26 22 18 32 23 39 35 35 9 4
40 25 41 20 19 63 4 4 15 9

B. Proposed Inter Mixture Weighted (IMW) GMM Posterior-
gram

IMW GMM is a post-processing method obtained by sort-
ing components based on the distance calculated among the
components of GMM using KL divergence. The neighbor
components of a given component, are assigned a fraction
of its probability value along with their posterior probability
value. This in effect helps feature being represented by a set
of components than a single component. The block diagram
to extract IMW GMM-PG is shown in Fig. 1.

After extracting GMM-PG for a frame, the component
having the highest probability is selected and its neighbor
components are identified in a sorting order. Depending on the
order, the probability value is shared with all the components,
in such a way that the nearest neighbor components get the
highest share, while the farthest components get the lowest
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share. This results in spreading the posterior probability across
the neighbor components which can be seen in the circled
region in Fig. 2. The details of the IMW GMM-PG extraction
are given in the following Algorithm 1.

Fig. 2: Posteriorgram comparison for the query ’intelligence’,
a) GMM-PG and b) IMW GMM-PG.

To visualize the effectiveness of IMW GMM-PG over
GMM-PG, we calculated the distance among posterior features
across different phonetic classes on entire TIMIT database.
The broad phone classes considered includes vow: vowels,
svw: semi vowels, nas: nasals, fri: voiced fricatives, ufr: un-
voiced fricatives and plo: plosives. Fig. 3 clearly shows that in
the case of obstruents (fricatives, affricates, and plosives), there
is a more ambiguity with the GMM-PG features than the IMW
GMM-PG features. Vowels and semivowels broad classes
are easily distinguished within in case of IMW GMM-PG.
However, it can also be noticed that in GMM-PG the vowel
and semivowels can be very clearly distinguished from the
plosive, fricatives broad phone classes, while the distinction
between the broad classes decreased in case of IMW GMM-
PG.

Fig. 3: Distance matrix with 44 phones for (a) GMM and (b)
proposed IMW GMM approach.

III. PROPOSED VC SYSTEM ARCHITECTURE

We develop the two-stage DNN-based VC architecture. In
particular, the first stage maps the cepstral features of a source
speaker to the corresponding source speaker’s IMW GMM-
PGs using DNN and the second network maps the target

speaker’s IMW GMM-PGs to the corresponding cepstral fea-
tures of the target speaker using DNN or GAN as shown in Fig.
4 and Fig. 5. Both the networks are trained simultaneously.

Algorithm 1 Proposed IMW GMM Algorithm
extractIMWGMMPost()
extractIMWGMMPost returns p′ IMW GMM-PG which is
obtained from GMM-PG p after applying IMW GMM logic.

1: Input: N ← Number of components in GMM.
2: n ← Dimension of feature vector.
3: θ ← Model parameters µ, σ, ω.
4: p(i) ← Posterior probability of a ith component

for a frame calculated using GMM (1 × N ).
5: S ← IMWGMM(n, N , θ)
6: k ← arg max

i
p(i), index of component

7: with maximum probability in p.
8: i ← 1
9: while i ≤ N :

10: M ← position of i in S[k, :]. (To find how closer
11: ith component is from k)
12: p′(i)← p(i)+p(k)

2M

13: end
14: return p′ ← normalize p′

function IMWGMM(n,N ,θ)
IMWGMM returns a matrix S which includes the indices of
components sorted in ascending order of KL distance from
each component.

1: i ← 1
2: S ← zero initialized matrix of dimension N × N ,
3: (Stores indices of nearest component ∀ i)
4: D ← zero initialized array of dimension 1 × N
5: (Stores distance array of a component.)
6: while i ≤ N :
7: D ← calcDist(i θ)
8: i ← i+1
9: S[i,:]← Indices of D after sorting in ascending order.

10: end
11: return S

function calcDist(i,θ)
calcDist returns array d : KL distance of ith component from
all N components given by θ.

1: Input: i ← Component under consideration.
2: for j from 1 to N :
3: P ← θ(i)
4: Q ← θ(j)
5: d[j] ← DKL(P ||Q)
6: end
7: d[i] ← high value, to avoid the same component
8: to be detected as neighbor.
9: return d

During the time of conversion, the posterior features are
predicted from the source speaker’s cepstral features using
the first network. These predicted posterior features are then
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passed through the second network to predict the target
speaker’s cepstral features. Since the GAN is able to produce
natural realistic samples, we also propose to use GAN at the
second stage for synthesis of the target cepstral features from
the posterior features, instead of a simple DNN-based network.
The block diagram of the GAN-based network is shown in Fig.
5.

Fig. 4: Schematic representation of the proposed two stage
DNN VC framework.

Fig. 5: Schematic representation of the proposed hybrid DNN-
GAN VC framework.

GANs are the generative model that do not explicitly
define a likelihood function, rather generates the samples by
establishing a min-max game between a generator (G), and
a discriminator (D). The G network learns to map samples
x from some prior distribution X to samples y belonging to
the data distribution Y . The G network aims to minimize the
distributional divergence between the model distribution Ŷ and
the data distribution Y . The D network is a binary classifier
with input as real samples (y) or generated samples (output of
G network). The G network is trained to maximally confuse
the D network, whereas the D network is trained to maximize
its classification accuracy [38], [39]. As the training proceeds,
the G network generates the samples closely following Y , and
maximally confuses the D network in differentiating between
Y and Ŷ .

The vanilla GAN architecture when employed for the
speech technology related applications, may sometimes fail
in learning the accurate spectral representation, given the
input representation. The architecture fails in preserving the
speech quality and improving the speech intelligibility [20].
The G network may generate the samples resembling Y , that
may not correspond to the input speech-cepstral frames. To
address this issue, MMSE regularization to the G network’s
adversarial loss reduces the numerical difference between the
input-output cepstral feature-pair, in addition to minimizing
the distributional divergence (adversarial training) [20]. The
regularized adversarial objective function can be mathemati-

cally formulated as [20]:

min
D

V (D) = −Ey∼Y [logD(y)] −

Ex∼X [1− log(D(G(x)))],
(2)

min
G

V (G) = −Ex∼X [log(D(G(x)))]+

1

2
Ey∼Y,x∼X [log(y)− log(G(x))]2,

(3)

where Ey∼Y denotes the expectation over all the samples y
coming from the distribution Y .

IV. EXPERIMENTAL RESULTS

The VCC 2016 database consists of training utterances
from 5 source and 5 target speakers [40]. In this paper, we
develop 25 VC systems using each method among the avail-
able speaker-pairs. AHOCODER have been used for analysis-
synthesis framework [41]. We extract 25-dimensional (d) Mel
Cepstral Coefficients features (MCC) over a 25 ms window
duration with the 5 ms frame shift. For each speaker in VCC
2016 database, 64-d GMM and SGMM posteriors are extracted
based on the model trained on the TIMIT database on 39-d
MFCC (including 13-d static + ∆ + ∆∆ features.

The G network in the MMSE-GAN has three hidden layers,
with 512 hidden units. Each layer is followed by batch
normalization [42] and sigmoid activation. The output layer
has 25 units to predict the target cepstral features, with linear
activation. The D network also has three hidden layers, with
512 hidden units and each followed by batch normalization
and tanh activation. The last layer uses the sigmoid activation
in the D network. Dropout with 0.3 drop probability is selected
for all the hidden layers in the G and D networks. The network
is trained for 250 epochs, with an effective batch size of
1000. The network parameters are updated through Adam
optimization [43], with a suitable learning rate of 0.001 [20].
Once the network is trained, the model with the least Minimum
Square Error (MSE) on the validation set is selected and the
testing is performed.

A. Subjective Evaluation

In this paper, two Mean Opinion Score (MOS) tests have
been performed to evaluate the developed VC systems, based
on the speech quality and the Speaker Similarity (SS) of the
converted voices. 26 subjects (4 females and 22 males without
any hearing impairments, and with the age variations between
18 to 22 years) participated in both the tests. Subjects eval-
uated the randomly played utterances for the speech quality
on 5-point scale. In particular, the subjects rated the converted
voices on the scale of 1 (i.e., very bad) to 5 (i.e., very good)
for speech quality. Fig. 6 shows the MOS analysis (obtained
from total 384 samples) for the developed VC systems along
with their 95 % confidence interval to quote the statistical
significance of the results. Effectiveness of the proposed IMW
GMM-PG over GMM-PG is ubiquitous in both the architecture
in the context of speech quality of the converted voices. In
particular, we obtained on an average 19.52 % and 7.94 %
relative improvement in MOS for speech quality with the DNN
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and the GAN-based VC systems, respectively. Similarly, in
another MOS test, subjects rated the converted voices in terms
of SS w.r.t. the target speaker on 5-point scale. In the 5-point
scale, 1 means totally different to the target speaker, and 5
means exactly similar to the target speaker for the SS. Fig.
7 shows the MOS for the SS of the developed VC systems
along with their 95 % confidence interval. In particular, we
obtained on an average 5.25 % of relative improvement in
terms of MOS for SS with the proposed IMW GMM-PG
features compared to the GMM-PG features. The lack of
large number of training examples for the adversarial training,
results in lower performance of the GAN w.r.t. the DNN-based
VC system as shown in Fig. 6 and Fig. 7 for speech quality
and SS, respectively. However, the proposed IMW GMM-PG
features clearly outperform the conventional GMM-PG.

Fig. 6: MOS scores w.r.t. the speech quality of the developed
systems along with the 95 % confidence interval.

Fig. 7: MOS scores w.r.t. the speaker similarity of the devel-
oped systems along with the 95 % confidence interval.

B. Objective Evaluation

In this paper, traditional objective measure, namely, Mel
Cepstral Distortion (MCD) (in dB) has been used for the
objective evaluation [44]. The systems having lower MCD
values can be considered as the better compared to the system
having higher values of MCD. We obtain 0.2 dB of absolute
reduction in the MCD with the proposed IMW GMM-PG w.r.t.
to the GMM-PG in the DNN-based VC systems as shown in
Fig. 8.

Fig. 8: MCD scores of the developed systems along with the
95 % confidence interval.

The MCD computes the scores on the basis of the numerical
similarity between the cepstral features corresponding to the
converted and the target speaker’s data. However, the adversar-
ial optimization minimizes the distributional divergence and do
not optimize the numerical difference between the converted
and the target speakers’ cepstral features. Hence, we observe
increment in the MCD in the case of GAN-based VC systems.

V. SUMMARY AND CONCLUSIONS

In this paper, we propose a novel unsupervised speaker-
independent IMW GMM-PG features for the case of two-stage
DNN as well as GAN-based VC framework. The key idea
of IMW GMM-PG feature is to share the probability values
of the current component with its neighbor, to spread the
posterior probability across the components. The effectiveness
of the proposed IMW GMM-PG features over the GMM-
PG features can be clearly observed in the context of VC
systems, developed on the VCC 2016 database. In particular,
the relative improvement of 13.73 %, and 5.25 % is obtained
with the proposed IMW GMM-PG w.r.t. the GMM-PG for
the speech quality and the speaker similarity of the converted
voices, respectively. In future, we plan to extend this work
by adapting different strategies for sharing the probabilities
across the components to obtain better speaker-independent
representations.
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