
RACORN-K: Risk-Aversion Pattern Matching-based
Portfolio Selection

Yang Wang†, Dong Wang†‡∗, Thomas Fang Zheng†‡
† Center for Speech and Language Technologies, Research Institute of Information Technology

Department of Computer Science and Technology, Tsinghua University, China
‡ Beijing National Research Center for Information Science and Technology

Corresponding Author E-mail: wangdong99@mails.tsinghua.edu.cn

Abstract—Portfolio selection is the central task for assets
management, but it turns out to be very challenging. Methods
based on pattern matching, particularly the CORN-K algorithm,
have achieved promising performance on several stock markets.
A key shortage of the existing pattern matching methods,
however, is that the risk is largely ignored when optimizing
portfolios, which may lead to unreliable profits, particularly in
volatile markets. We present a risk-aversion CORN-K algorithm,
RACORN-K, that penalizes risk when searching for optimal
portfolios. Experiments on four datasets (DJIA, MSCI, SP500(N),
HSI) demonstrate that the new algorithm can deliver notable
and reliable improvements in terms of return, Sharp ratio and
maximum drawdown, especially on volatile markets.

I. INTRODUCTION

Portfolio selection has gained much interest for its theoret-
ical importance and practical value. It aims at optimizing the
assets allocation so that higher returns can be obtained while
taking less risk. According to the assumptions of the financial
signal, existing portfolio selection strategies can be classified
into three categories [1]: follow-the-winner [2], [3], [4], [5],
follow-the-loser [6], [7], [8], [9], and pattern matching [10],
[11], [12]. The first two categories heavily rely on the trend
of the market, thus may lead to a huge loss if the trend
is not as assumed [13]. The pattern matching approach, in
contrast, relies on a more practical assumption that patterns
will reoccur, hence more practically applicable.

A typical pattern matching algorithm involves two stages:
similar period retrieval and portfolio optimization. Most of
the existing researches focus on the first stage, in particular
how to measure the similarity between the market status in
the past and that at present. For example, Gyorfi et al. [10],
[11] uses Euclidean distance, while Li et al. [12] adopts the
Pearson correlation coefficient. Empirical studies demonstrate
that the correlation-based pattern matching approach, denoted
by CORN-K, can generally achieve better performance than
other pattern matching-based methods [12].

In spite of the success of CORN-K (and some other pattern
matching methods), a potential problem of this approach is that
no risk is considered when searching for optimal portfolios,
i.e., the second stage of the algorithm. This is clearly a
shortcoming as risky portfolios will lead to reduced long-term
return. This problem is particularly severe for volatile markets
that involve many risky assets. A natural idea is to penalize

the risky portfolios when searching for the optimal portfolio.
In this work, we propose a risk-aversion CORN-K algorithm,
RACORN-K, that penalizes risky portfolios by adding a
regularization term in the optimization objective function. We
evaluate this new algorithm with four datasets (DJIA, MSCI,
SP500(N), HSI). The results demonstrate that RACORN-K
delivers notable and consistent performance improvements,
in terms of long-term return, Sharp ratio and maximum
drawdown. The improvements on the volatile markets DJIA
and SP500(N) are particularly remarkable, demonstrating the
value of the proposal.

II. PROBLEM SETTING

Consider an investment over m assets on n trading periods.
Define the relative price vector at trading period t by xt =
(xt,1, ..., xt,m) ∈ Rm

+ , whose i-th component xt,i =
P (t,i)

P (t−1,i)

and P (t, i) is the closing price of the i-th asset at the t-th
trading period. Given a window size w, the market window
for period t is defined as Xt−1

t−w = (xt−w, ...,xt−1), which is
assumed to represent the status of the market at period t.

A portfolio denoted by bt = (bt,1, ..., bt,m)T ∈ Rm is
defined as a distribution over the m assets, where bt,i is the
proportion of the investment on the i-th asset at period t. In this
study, we assume that only long positions are allowed, which
implies the following constraint on bt: bt,i ≥ 0,

∑
i bt,i = 1.

At the trading period t, an investor selects a portfolio
bt given the past market relative prices {x1, ...,xt−1}. The
instant return is computed by st =

∑
i bt,ixt,i = bT

t xt, and
the accumulated return produced by {b1, ...,bn} is St =∏n

j=1 b
T
j xj .

III. ALGORITHM

In this section, we first give a brief description of the
classical CORN-K algorithm, and then propose our RACORN-
K algorithm. A conservative version of RACORN-K, denoted
by RACORN(C)-K, will be also proposed.

A. CORN-K algorithm

At the t-th trading period, the CORN-K algorithm first
selects all the historical periods whose market status is sim-
ilar to that of the present market, where the similarity is
measured by the Pearson correlation coefficient. This patten
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matching process produces a set of similar periods, denoted
by C(xt;w, ρ), where w is the size of the market window,
and ρ is the threshold when selecting similar periods. This is
formulated as follows:

C(xt;w, ρ) = {xj |corr(Xj−1
j−w,X

t−1
t−w) > ρ},

where corr(X,Y ) is the correlation coefficient between X and
Y , and w < j < t. Note that when calculating the correlation
coefficient, the columns in Xj−1

j−w (the same for Xt−1
t−w) are

concatenated into a (m × w)-dimensional vector. Once the
similar periods have been selected, the portfolio on the m
assets can be obtained following the BCRP principle [14]:

b∗
t (w, ρ) = argmax

b∈∆m

∑
x∈C(xt;w,ρ)

log(bTx), (1)

where ∆m = {b :
∑m

i=1 bi = 1, bi ≥ 0} represents a simplex
with m components.

Finally, CORN-K selects various w and ρ. By each setting
of these parameters (w, ρ), an optimal portfolio b∗

t (w, ρ) is
computed following (1). Note that b∗

t (w, ρ) is a particular
strategy, also called an ‘expert’, denoted by ϵ(w, ρ). The
experts which achieve top-k accumulated returns are selected
to compose an expert ensemble Et, where the accumulated
return of an expert ϵ(w, ρ) is denoted by St(w, ρ). With the
expert ensemble Et, the ensemble-based optimal portfolio is
derived by:

b∗
t =

∑
ϵ(w,ρ)∈Et

St−1(w, ρ)b
∗
t (w, ρ)∑

ϵ(w,ρ)∈Et
St−1(w, ρ)

. (2)

It is expected that this ensemble-based average leads to more
robust portfolios.

B. Risk-Aversion CORN-K (RACORN-K)

The portfolio optimization is crucial for the success of
CORN-K. A potential problem of the existing form (1),
however, is that the optimization is purely profit-driven. This
is clearly dangerous as the high-profit assets it selects may
exhibit high variation, leading to a risky portfolio that suffers
from unexpected loss. It is particularly true for volatile markets
where the prices of many assets are unstable. A natural idea to
solve this problem is to penalize risky portfolios when search-
ing for the optimal portfolio. This leads to a risk-aversion
CORN-K, denoted by RACORN-K. More specifically, the
objective function in (1) is augmented by a risk-penalty term,
formulated as follows:

b∗
t (w, ρ, λ) = argmax

b∈∆m

∑
x∈C(xt;w,ρ) log(b

Tx)

|C(xt;w, ρ)|
− λσt(w, ρ)

(3)
where λ is the risk-aversion coefficient, |C(xt;w, ρ)| is the
size of C(xt;w, ρ) , and σt(w, ρ) is the risk:

σt(w, ρ) = std(log(bTx))|x∈C(xt;w,ρ),

where std(·) denotes the standard deviation function.
We emphasize that the risk-penalty term std(log(bTx))

is different from bT std(log(x)): the former is the risk of
the portfolio, while the latter is the sum of the risk of the
assets according to the portfolio. This form is similar to the
classical mean-variance model [15]. A key difference from the
mean-variance model (and most other risk-aversion models)
is that the risk is computed over the historical price relatives
in C(xt;w, ρ), rather than on the whole trading periods. It
therefore estimates the risk of the portfolio with a particular
pattern matching strategy, i.e., the CORNK-K algorithm, rather
than the unconstrained market risk of the selected assets.

With the new optimization objective (3), the ensemble-based
optimal portfolio is derived similarly as in CORN-K. The only
difference is that we have introduced a new hyper-parameter λ,
so the expert should be extended to ϵ(w, ρ, λ). The derivation
is similar to (2), formulated by:

b∗
t =

∑
ϵ(w,ρ,λ)∈Et

St−1(w, ρ, λ)b
∗
t (w, ρ, λ)∑

ϵ(w,ρ,λ)∈Et
St−1(w, ρ, λ)

.

C. Conservative RACORN-K (RACORN(C)-K)

In the above RACORN-K algorithm, the risk-aversion co-
efficient λ is treated as a new free parameter and is combined
with w and ρ to derive ensemble-based optimal portfolio. A
potential problem of this type of ‘naive ensemble’ is that
it does not consider the time-variant property of the risk.
In fact, the risk of the portfolio derived from each expert
tends to change quickly in an volatile market and therefore
the weights of individual experts should be adjusted timely.
To achieve the quick adjustment, we use the instant return
st(w, ρ, λ) to weight the experts with different λ, rather than
the accumulated return St−1(w, ρ, λ). This is formulated as
follows:

b∗
t (w, ρ) =

∑
λ st(w, ρ, λ)b

∗
t (w, ρ, λ)∑

λ st(w, ρ, λ)
. (4)

Since st is not available when estimating b∗
t , we approxi-

mate it by the geometric average of the returns achieved in
C(xt;w, ρ), given by:

st(w, ρ, λ) ≈ exp(

∑
xj∈C(xt;w,ρ) log(b

∗
t (w, ρ, λ)

Txj)

|C(xt;w, ρ)|
).

In practice, we find that omitting the normalization term
1

|C(xt;w,ρ)| can deliver slightly better results.
Once b∗

t (w, ρ) is obtained, the ensemble-based optimal
portfolio can be derived as CORN-K following (2), where
the accumulated return St−1(w, ρ) is achieved by applying
the portfolios derived by (4). Compared to RACORN-K, this
variant algorithm is more risk-aware and thus assumed to be
more conservative. We denote this conservative version of
RACORN-K as RACORN(C)-K.
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IV. EXPERIMENTS

We evaluate RACORN-K and RACORN(C)-K on four
datasets, and compare the performance with the classical
CORN-K algorithm. The performances of some other popular
strategies are also reported.

A. Dataset

TABLE I
DATASETS USED IN THE EXPERIMENTS.

Dataset Region Time range Trading days Assets

DJIA US 2001/01/14 - 2003/01/14 507 30
MSCI GLOBAL 2006/04/01 - 2010/03/31 1043 24

SP500(N) US 2000/01/03 - 2014/12/31 3773 10
HSI HK 2000/01/03 - 2014/12/31 3702 10

Table I shows the four datasets used in our experiments. The
DJIA (Dow Jones Industrial Average) dataset is a collection
of 30 large publicly owned companies based in the United
States, collected by Borodin et al. [6]. The MSCI1 dataset
is a collection of 24 global equity indices which are the
constituents of MSCI World Index. These two datasets are
relatively old. In order to evaluate the performance of the
proposed algorithms on more recent data, we collected an-
other two datasets: SP500(N) and HSI. The SP500(N) dataset
consists of 10 equities with the largest market capitalization
(as of Apr. 2003) from the S&P 500 Index. Note that this
dataset is different from the SP500 dataset collected by Li et
al. [12]. The latter is a little old and may not reflect the trend of
the current market2. The HSI dataset contains 10 equities with
the largest market capitalization (as of Jan. 2005) from Hang
Seng Index. It is worth noting that SP500(N) and HSI cover
both bull markets and bear markets, particularly the finance
crisis in 2009.

B. Implement details

The OLPS toolbox [16] is used to implement the baseline
strategies, where the default values are set for the hyper-
parameters. For RACORN-K, the maximum window size is
set to 5. The correlation coefficient threshold ρ ranges from 0
to 0.9, with the step set to be 0.1. The risk-aversion coefficient
λ ranges from 0 to 0.03, with a step 0.01. While combining the
outputs of experts, top 10% experts are selected to compose
the ensemble Et. As for RACORN(C)-K, all the parameters
are the same as RACORN-K, except that λ ranges from 0 to
0.1 with a step 0.01, as we found RACORN(C)-K has the
capability to accept a larger maximum risk aversion. These
parameters are used in the experiments on all the four datasets.

C. Experimental results

Three metrics are adopted to evaluate the performance
of a strategy: accumulated return (RET), Sharpe ratio (SR)
and maximum drawdown (MDD). RET is mainly used to

1http://olps.stevenhoi.org/
2In fact, our new method also performs well on the old SP500 dataset. See

the extended version of this paper (http://project.cslt.org).

evaluate the profitability of strategies while MDD is used to
evaluate the risk, specifically the downside risk. With SR, we
can compare strategies at the same level of risk because it
measures the excess return per unit of deviation. In general,
lower MDD values and higher values of RET and SR indicate
better performance. SR and MDD are more concerned as our
main goal is to control the risk. And the improvement on
SR and the reduction on MDD are often more important for
investors, particularly for asset managers who can leverage
various financial tools to magnify returns.
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Fig. 1. RET curves with CORN-K and RACORN-K/RACORN(C)-K on four
datasets.

1) General results: Table II summarizes the results, where
the improvements compared to CORN-K have been marked as
bold face. From these results, it can be seen that RACORN-K
consistently improves SR and MDD on all the datasets, which
confirms that involving risk aversion does reduce the risk of
the derived portfolio. The conservative version, RACORN(C)-
K, delivers even better performance in terms of SR and MDD,
though the long-term return (RET) is slightly reduced. In most
cases, both RACORN-K and RACORN(C)-K obtain larger
RETs than the CORN-K baseline, demonstrating that control-
ling risk will ultimately improve long-term profits. The only
exception is that the RET on HSI drops with RACORN(C)-K;
however, the absolute RET has been very high, so this RET
reduction can be regarded as a reasonable cost for the risk
control.

Fig. 1 shows the RET curves with CORN-K and RACORN-
K/RACORN(C)-K.3 It can be seen that RACORN-K or
RACORN(C)-K has the same trend as CORN-K in general,
particularly on relatively stable markets (MSCI and HSI).
However, in periods where CORN-K is risky, RACORN(C)-K
behaves less bumpy and hence more reliable. This can be seen

3RACORN-K rather than RACORN(C)-K is plotted for HSI as its RET
curve better matches the RET curve of CORN-K, so readers can see more
clearly how the risk-aversion penalty changes the behavior of the algorithm.
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TABLE II
PERFORMANCES OF DIFFERENT STRATEGIES ON FOUR DATASETS.

Dataset DJIA MSCI SP500(N) HSI

Criteria RET SR MDD RET SR MDD RET SR MDD RET SR MDD

Main Results
RACORN(C)-K 0.93 -0.27 0.31 79.37 6.60 0.21 12.55 0.55 0.53 202.11 1.57 0.28

RACORN-K 0.83 -0.46 0.37 80.61 6.50 0.21 13.02 0.49 0.57 263.69 1.58 0.29
CORN-K 0.81 -0.50 0.38 78.48 6.39 0.21 12.51 0.46 0.60 255.91 1.54 0.30

Naive Methods UBAH 0.76 -0.68 0.39 0.91 -0.26 0.65 1.52 -0.06 0.50 3.54 0.24 0.58
UCRP 0.81 -0.54 0.38 0.93 -0.23 0.64 1.78 -0.00 0.68 4.25 0.30 0.55

Follow the Winner
UP 0.81 -0.55 0.38 0.92 -0.24 0.64 1.77 -0.01 0.68 4.27 0.30 0.55
EG 0.81 -0.55 0.38 0.93 -0.23 0.64 1.75 -0.01 0.67 4.22 0.30 0.55

ONS 1.53 0.59 0.32 0.86 -0.26 0.68 0.78 -0.09 0.96 4.42 0.24 0.68

Follow the Loser

ANTICOR2 2.29 1.20 0.35 3.22 0.91 0.48 0.71 -0.12 0.97 12.28 0.53 0.55
PAMR2 0.71 -0.43 0.76 16.87 2.73 0.54 0.01 -0.55 1.00 1.19 -0.09 0.86

CWMR Stdev 0.69 -0.45 0.76 17.28 2.74 0.54 0.02 -0.54 0.99 1.28 -0.07 0.85
OLMAR2 1.16 0.07 0.58 22.51 2.84 0.42 0.03 -0.44 1.00 3.65 0.15 0.84

Pattern Matching
based Algorithms

BK 0.69 -0.89 0.43 2.62 0.94 0.51 1.97 0.03 0.59 13.96 0.65 0.45
BNN 0.91 -0.38 0.31 13.50 3.05 0.33 6.86 0.42 0.41 107.76 1.32 0.33

clearly in (a) DJIA and (c) SP500(N). Fig. 1 presents some
‘key points’ where RACORN(C)-K behaves more ‘smooth’
than CORN-K. Due to this smoothness, the risk of the strategy
is reduced, and extremely poor trading can be largely avoided,
which result in increased SR and reduction in MDD.

When comparing to other baselines, it can be seen that the
CORN-K family performs much better and more consistent.
For example, OLMAR1, a classical follow-the-loser strategy,
performs the best on DJIA, but the advantage is totally lost
on other datasets. These results re-confirm the reliability of
pattern matching methods.

2) Detailed analysis: Analyzing the performance of
RACORN-K/RACORN(C)-K on different markets sheds more
light on the property of the risk-aversion approach. From
Table II, we can see that RACORN-K/RACORN(C)-K ob-
tains the most significant SR improvement on DJIA, and
the most significant MDD reduction on DJIA and SP500(N).
Interestingly, these two datasets are the ones that the conven-
tional CORN-K does not work well (less RET, smaller SR,
higher MDD). This can be also seen from Fig. 1, where the
RET curves with CORN-K exhibit more risk on DJIA and
SP500(N) compared to the curves on MSCI and HSI. This
indicates that RACORN-K/RACORN(C)-K are more effective
when the conventional CORN-K is risky.
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Fig. 2. Market and RET curves with CORN-K and RACORN(C)-K on DJIA
and SP500(N).

More analysis shows that the risk of CORN-K is largely
attributed to the risk of the market. To make it clear, the
market returns of DJIA and SP500(N) are plotted together
with the RET curves of CORN-K and RACORN(C)-K in
Fig. 2. For a clear presentation, only the first 600 trading
days of SP500(N) are plotted as during this period the market
is volatile. It shows clearly that on the markets with huge
volatility, involving risk-aversion largely reduced the risk,
hence a more reliable strategy. As a summary, CORN-K may
perform less effective on risky markets, and the risk-aversion
algorithms can largely alleviate this problem. Fortunately, this
advantage on risky markets does not degrade its performance
on stable markets (where CORN-K works well). This is a nice
property and indicates that RACORN-K/RACORN(C)-K is a
safe and effective extension/substitution of CORN-K.

V. CONCLUSION

This paper presented two risk-aversion CORN-K algo-
rithms, RACORN-K and RACORN(C)-K that involve a risk-
aversion penalty when searching for optimal portfolios. Ex-
perimental results on four datasets demonstrate that the new
algorithms can consistently improve the Sharpe ratio and
reduce maximum drawdown. This improvement is particu-
larly significant on high-risk markets where the conventional
CORN-K tends to perform not as well. Fortunately, this risk
control does not degrade the long-term profit in general, and
in many cases, it leads to even better returns. Future work
involves exploring more suitable regularizations, e.g., group
penalty and temporal continuity constraint.
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