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Abstract—We introduce the use of blinkies for acoustic sensing
and audio processing applications. Blinkies are low-power sensors
with a microphone and an LED that can be easily distributed
over a large area. The power of the LED is modulated by the
sound intensity and the signals from all devices can be captured
by a regular video camera. We present our design for blinkies and
characterize the transmission function from blinky to captured
video signal. The usefulness of such a system is demonstrated
with two applications. First, we evaluate beamforming informed
by a high-quality voice activity signal obtained from a blinky.
Second, we investigate sound source localization using several
blinkies distributed in a room.

I. INTRODUCTION

The effectiveness of microphone arrays has been largely
demonstrated for speech enhancement via beamforming [1],
[2], source separation [3], source localization [4] and tracking
[5], room geometry inference [6], and dereverberation [7].
Microphone arrays come in many shapes and sizes, from the
simple stereo microphones in smartphones and computers, to
arrays with tens or hundreds of microphones such as the
Pyramic array [8] or that of Perrodin et al., [9], to over
a thousand channels in the LOUD array [10]. All these
arrays perform synchronous sampling of all the channels,
a pre-requisite of most of the above-mentioned techniques.
Their design and construction is both costly and challenging.
Recently, clever sampling frequency mismatch compensation
algorithms have enabled the use of distributed, asynchronous
microphone arrays [11], and alleviated somewhat the cost of
multichannel processing. Yet, these arrays come with their own
set of limitations, e.g., network bandwidth and latency issues.

In this paper, we explore a different paradigm of multi-
channel acoustic sensing. We design a simple, inexpensive
embedded device that records sound using a microphone and
converts it into a luminous signal via a light emitting diode
(LED). We call it a blinky. Blinkies can be spread over a large
area and their signal recorded synchronously by a conventional
video camera, as illustrated in Fig. 1. Such a system can easily
scale to hundreds or thousands of channels without many
technical hurdles and minimal setup time. However due to
the low frequency of off-the-shelf video cameras – typically
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Fig. 1: Diagram of the blinky acoustic sensing paradigm.

30 to 60Hz – the type of processing and problems it can
tackle differs significantly from conventional array processing.
Fig. 4b shows a frame extracted from a video where twenty
blinkies can be seen reacting to four sound sources.

Using light as a medium for acoustic sensing has been
explored in the past for visualization [12] and communication
[13]. More recently, an analog blinky design and various
algorithms were proposed to study frog chorus [14]. Our
intent in this work is to lay the groundwork to open the
door to a wider range of applications of blinkies. We show
that recent advances in low-cost embedded devices enable
the design of a considerably more flexible platform for the
blinkies. We believe this can be useful to the community
and make the design openly available1. Finally, we showcase
two applications of blinkies – first to speech enhancement in
conjunction with a conventional microphone array, second to
sound source localization. Some early results of this paper
have been presented at a meeting of the Acoustical Society
of Japan [15]. In this paper, we further extend them with a
detailed description of our now completed blinky design, new
and extended experiments on light-aided beamforming, and
more details in general.

The rest of this paper is organized as follows. Section II
describes the sensor design and the characterization of the
channel. Section III and Section IV describe the two example
applications: beamforming with VAD side-information, and
energy-based localization, respectively. Section V concludes
this paper.

1Design files and code available at https://github.com/onolab-tmu/blinky.
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Fig. 2: A blinky sound-to-light conversion sensor. Left: top
and bottom of the circuit board with the two microphones and
four LEDs. Right: the assembled blinky with enclosure.

II. SOUND-TO-LIGHT SENSOR DESIGN

In this section, we present the design and operation of the
blinky sensor.

A. Hardware Design

Our design for the blinky sound-to-light conversion sensor
benefits from the recent developments in affordable, yet pow-
erful, embedded processing platforms. After reviewing several
options, we settled on the ESP32 system-on-chip microcon-
troller from Espressif systems [16]. The following features
make it an attractive platform for a low-cost distributed audio
processing platform.

• Dual core RISC CPU at up to 240MHz
• Floating-point processing unit
• Two I2S audio buses
• Low-power modes
• Wifi and Bluetooth
• A large online developer community and comprehensive

documentation
• Unit price around USD 5 in small quantities

While Wifi and Bluetooth are not used by the blinkies, they
allow the platform to be reused as a wireless microphone for
asynchronous array processing.

To simplify the design process, we used the HUZZAH32
platform that adds to the ESP32 all the necessary power regu-
lation, programming circuit, as well as a Lithium Ion/Polymer
USB battery charger. An extension circuit board with two
digital microphones, four LEDs, and a few switches for power
and configuration, custom ordered for the blinky . The two
digital MEMS microphones (ICS-43432) can connect directly
to the ESP32 thanks to their integrated I2S interface, greatly
simplifying the design. The LEDs are selected for their high
brightness at low current consumption. The four LEDs are
all chose of a different colors (red, green, blue, and white) to
potentially exploit the different color channels of cameras. The
extension board was designed to fit in a commercially available
enclosure. The circuit as well as the assembled blinky can be
seen in Fig. 2.

B. Operations

While different schemes are possible, we investigate the
direct modulation of the LED with the power of the sound. To
this end, the ESP32 is programmed to continuously acquire
sound from the microphone. The variance of blocks of 64
consecutive samples is computed and mapped in a non-linear
way to the range of the pulse width modulation (PWM) driving
the LED. The non-linearity is necessary due to the large range
of amplitudes in natural sounds. Using a linear mapping from
the audio PCM range (24 bit) to the PWM range (12 bit) was
empirically confirmed to discard too much useful information
from the lower amplitude components of sound. In addition
to this problem, the transfer function from PWM duty cycle
to measured pixel intensity with a commercial camera was
measured and found to be approximately logarithmic in the
PWM duty cycle (Fig. 3, bottom left).

In this work, we use an empirically derived mapping that
preserves information from small amplitudes components of
speech and takes into account the non-linearity of the PWM-
to-pixel transfer function of the system. The mapping is a
composition of two functions. The first one is derived from
the empirical cumulative distribution function (CDF) of the
variance of blocks of 64 samples of natural speech. This
CDF was estimated using the whole training set of the TIMIT
corpus [17]. Applying the CDF, shown in Fig. 3, top, to the
input data makes its distribution uniform, thus maximizing the
entropy of the signal transmitted. This way, a larger range of
values of the PWM duty cycles are allocated to amplitudes
of speech that are most frequent. The second map applied is
simply the inverse of the PWM-to-pixel transfer function. A
measurement of the transfer function of the system using the
non-linear mapping just presented is shown in Fig. 3, bottom
right.

In the next two sections, we demonstrate the usefulness
of the blinky paradigm though two applications. First, we
show how using a single blinky together with a microphone
array can dramatically enhance conventional beamforming in
a challenging scenario. Second, we evaluate the potential of
blinkies for sound source localization based on energy only in
an indoor scenario.

III. APPLICATION I: BLINKY-INFORMED BEAMFORMING

In this application, we consider the use of blinkies (and
camera) together with a conventional microphone array sys-
tem. A single blinky is placed in the vicinity of the target
sound source and can thus be used to provide reliable voice
activity detection (VAD). The VAD is subsequently used to
compute the optimum beamforming filters as explained next.

A. Maximum SINR Beamforming

As usual, we work in the time-frequency domain and
suppose the microphone signal x is a mixture of the target
source s, a number of interferers {zq}Qq=1, and noise b, i.e.,

x(t, ω) = s(t, ω) +

Q∑
q=1

zq(t, ω) + b(t, ω), (1)
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Fig. 3: Top: the empirical cumulative distribution function of
the variance of short speech blocks. Bottom left: measured
transfer function from PWM duty cycle to measured pixel
intensity. Bottom right: measured transfer function between
input sound variance to measured pixel intensity with the non-
linear mapping applied in the blinky.

where t is the frame index, and ω the frequency. Given beam-
forming weight vector w(ω), defining z(t, ω) :=

∑
q zq(t, ω),

and further omitting the frame index and frequency for clarity,
the signal-to-interference-and-noise ratio (SINR) at the output
of the beamformer is defined as

SINR(w) =
E|wHs|2

E|wH(z + b)|2
=

wHRsw

wHRzbw
, (2)

where Rs and Rzb are the covariance matrices of signal and
interference-and-noise, respectively. The aptly named max-
imum SINR (Max-SINR) beamformer is chosen so as to
maximize this ratio,

wM−SINR = argmax
w

SINR(w) = argmax
w

wHRxw

wHRzbw
, (3)

where in the last equality we replaced Rs by Rx = E|x|2 as
this only changes the ratio up to a constant additive factor [1].
Provided Rx and Rzb are known, the wM−SINR is the eigen-
vector corresponding to the largest generalized eigenvalue for
the generalized eigenvalue problem Rxw = λRzw.

In practice, the covariance matrices are unknown and are
replaced by their sample estimates R̂x and R̂zb. While the
former can be computed from the input signal, there is usually
no good estimate for the latter, which is why the Max-SINR
beamformer is seldom used. This is where the blinky enters
the stage. The blinky placed close to the target source detects
when it is active, and Rzb can be estimated from frames where
it is not. Let the VAD function be VAD(t) = 1 if the target
source is active in the t-th frame, and zero otherwise. Then,

the covariance matrices estimators are

R̂x(ω) =
N∑
t=1

x(t, ω)x(t, ω)H , (4)

R̂zb(ω) =
N∑
t=1

(1− VAD(t))x(t, ω)x(t, ω)H . (5)

These are then used in place of their expected values in (3).
Note that this scheme is completely data-driven and doesn’t
require any extra information about the location of sources or
microphones.

B. Experiment Setup

We evaluated the scheme just described in a practical
experiment. We placed four loudspeakers in an office 9.9m by
7.4m with a T60 of 0.3 s, each playing a different sound. The
first three sources are natural speech extracted from the CMU
ARCTIC corpus [18]. The fourth one is a contact speaker on a
0.75m by 1.8m table playing factory noise extracted from the
BBC Sound Effects archive [19], thus acting as an extended
sound source. All the sound samples have a duration of around
15 s. The distance between the target sound source, placed at
the first loudspeaker, and the microphones was approximately
7.7m. The blinky was placed directly on top of the target
source. A diagram of the setup as well as a picture taken
during the experiment are shown in Fig. 4.

A calibration step was used to measure the gain of each
source, which was subsequently compensated to play the
signal at a pre-determined signal-to-interference-ratio (SIR)

SIR =
σ2
s

3σ2
z

(6)

where σ2
s is the power of the target source and all three inter-

ferers have the same power σ2
z . The power of the interferers

σ2
z is obtained by fixing the target source power to σ2

s = 1. At
record time, both the mix of all sound sources and each source
alone were recorded, resulting in five segments per target
SIR. To avoid synchronization mismatch between the mix and
reference samples, they were first all concatenated in one audio
file and all recorded in a single session. A known sequence
of white noise was played at the beginning of the recording
session to mark precisely the beginning. The signal from the
blinky was captured at 60 frames-per-second with a Sony
HDR-CX535 camera. The pixels in an 11× 11 patch around
the location of the LED in the video frame were averaged to
obtain a more reliable blinky signal. The sound was recorded
using the Pyramic 48-channel microphone array [8].

All recorded signals were downsampled at 16 kHz to match
the sampling frequency of the speech samples. The VAD signal
used to compute the Max-SINR beamformer was obtained by
thresholding the blinky signal using an empirically determined
threshold. The same value of the threshold was used at all SIR.
To make certain no target signal was mixed in the estimation
of the interference-and-noise covariance matrix, the voice-
active intervals were extended by 3000 samples on both sides.
Blind source separation using independent vector analysis
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Fig. 4: (a) Illustration of the four sound sources, video camera,
and microphone array in the room. (b) A frame extracted
from the video recorded with source locations highlighted. The
blinkies can be spotted thanks to their LEDs.

(AuxIVA) [3] was also applied as a baseline algorithm. Both
Max-SINR and AuxIVA were performed in the short time
Fourier transform (STFT) domain with frame size of 2048
samples, half overlap, a Hann analysis window, and matched
synthesis window. For both algorithms, the scale ambiguity
was resolved by the so-called projection-back method [20].
Max-SINR was tested on subsets of 2, 4, 24, and 48 channels
of the Pyramic array. AuxIVA is specialized for the determined
source separation case (as many microphones as sources)
and only was thus only tested on 2 and 4 channels, as the
evaluation with more channels is ambiguous.

C. Results

The performance of the algorithms is evaluated using the
source separation metrics of signal-to-distortion ratio (SDR)
and SIR [21]. The metrics are computed using their imple-
mentation in the mir_eval Python package [22].

Fig. 5 shows the results from the evaluation. Because of
the ambient noise in the reference recording used for SDR
and SIR computations, there is a small discrepancy between
the target and actual SIR. To account for this, we evaluate the
SDR and SIR of the input mix signal as well. We first describe

the results in terms of SIR which characterizes the level
of separation achieved. For two channels, AuxIVA improves
the SIR between 0 and 3 dB, while Max-SINR achieves 4
to 5 dB. Note that at very low input SIR (-5 and 0 dB),
Max-SINR manages 3-4 dB improvement whereas AuxIVA
completely fails. For four channels, we have 3-4 dB and 8-10
dB improvements using AuxIVA and Max-SINR, respectively.
Here, AuxIVA performs slightly better than Max-SINR at -
5 and 0 dB input SIR. At all other cases, however, Max-
SINR does around 5 dB better than AuxIVA. With 24 and 48
channels, performance is shockingly good with over 15 and 25
dB improvements, respectively, at the lowest input SIR values.
When increasing the input SIR, the output SIR tends to plateau
around 30 dB.

Regarding the SDR, at low input SIR, the SDR is improved
by both AuxIVA and Max-SINR compared to the input mix.
Going to higher input SIR, the output SDR tends to saturate
around 7.5-8 dB for all algorithms. The exception is AuxIVA
with 4 channels that saturates around 5 dB. Something surpris-
ing is that increasing the number of channels leads to worse
SDR. Informal listening to the output signals2 revealed that
using 24 and 48 channels reduces ambient noise so dramati-
cally that a mismatch appears with the reference recording of
the target source (which also contains ambient noise). While
further investigation is required, we believe this might be the
cause of this discrepancy.

IV. APPLICATION II: ENERGY-BASED LOCALIZATION

The second application we investigate is sound source
localization. We consider a number of blinkies spread in an
indoor location and a camera recording the scene is used
to obtain the amplitude of the sound at each blinky via the
intensity of its LED (Fig. 4b shows a picture of such a setup).
In scenarios where the area is not so large, time of flight
methods cannot be used due to the low sampling frequency
of the camera. Instead, we adapt an energy-only algorithm
from Chen et al. [23]. The modification is needed because we
will assume the locations of the blinkies to be known. This
is justified since they could be recovered from the camera
recording using computer vision techniques [24]. We first
describe the modified algorithm, then the simulation setup,
and finally discuss the result of the evaluation.

A. Energy-based Localization Algorithm

We consider a scenario with K sources and M blinkies
distributed in a room. As mentioned earlier, the locations
{rm}Mm=1 of the blinkies are assumed to be known. Following
the original algorithm [23], we use a simple attenuation model
for the energy received from source k, located at sk, by
blinky m

amk =
gmpk

‖rm − sk‖2α
, (7)

where gm is the gain of the sensor, and pk the power of
the source. The exponent α characterizes the decay due to

2Available at: http://www.robinscheibler.org/apsipa2018.
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Fig. 5: The evaluation in terms of SDR and SIR of the input
mix, the output of Max-SINR beamforming, and AuxIVA blind
source separation, for 2, 4, 24, and 48 channels.

propagation, in anechoic conditions α = 1. The original work
considered a typical office to have approximately α ≈ 0.5
[23]. In contrast, we will try to estimate α together with the
rest of the unknowns.

Assuming noise is normally distributed in the log domain,
the maximum likelihood estimator is obtained by solving the
following minimization problem

min
α,g̃m,p̃k,sk

M∑
m=1

K∑
k=1

(ãmk− g̃m+α log ‖rm−sk‖2− p̃k)2 (8)

where variables with a tilde are the log of their counterpart
without it (e.g., ãmk = log amk). This is a non-linear least-
squares problem with a potentially large number of local
minima. A good initialization is thus crucial. We follow Chen
et. al., [23] for the initialization of g̃m, p̃k, and dmk =
‖rm−sk‖2, for all m, k. Note that their initialization scheme
assumes that each sound source is somewhat in the vicinity
of one of the sensors. Whereas multidimensional scaling was

6 m

5 
m

Fig. 6: The setup of the localization simulation.

originally used to recover rm, sk from dmk, knowing rm
lets us use the more powerful squared ranged least-squares
(SRLS) method [25]. The only problem is the scale mismatch
between the rm (e.g., given in meters) and dmk whose unit is
unknown. This is addressed by modifying SRLS to also solve
for the unknown scaling factor:

sk = argmin
s,ρ

M∑
m=1

(
‖s− rm‖2 − ρd2mk

)2
. (9)

Just like the original SRLS, this problem can be solved
globally despite its non-convexity.

Starting at this initial estimate, the problem (8) is solved
with the Levenberg-Marquardt algorithm through its imple-
mentation in the least_squares function from the scipy
package [26]. Because it was empirically noticed that we do
not always converge to a good solution, the obtained solution
is perturbed with a small quantity of noise and the solver is
restarted from the new position. This process is repeated a
hundred times. The solution with smallest cost is chosen.

B. Simulation Setup

We evaluate the localization algorithm just described
through numerical experiments. Simulations of indoor sound
propagation are carried out using the pyroomacoustics
Python package [27]. A 6m by 5m two-dimensional virtual
room is created with eight blinkies configured as shown in
Fig. 6. Eight sound sources are placed at random, but each
in the vicinity of one of the blinkies. Namely, the distance of
source k to blinky m is normally distributed with unit mean
and standard deviation σ = 0.2. The experiment is repeated
one thousand times with different source placements.

C. Results

The localization errors for all source placements are aggre-
gated into the histogram of Fig. 7. We obtain that over all
source placements, the median localization is just 6 cm, that
is 1% of the room width. The 90-th percentile is slightly under
30 cm. In 7.45% of all cases, the method fails and the error
is larger than 50 cm. Since there are eight sources, this can be
interpreted as localizing seven of them on average.

V. CONCLUSION

We investigated the use of blinkies, sound-to-light conver-
sion sensors, for acoustic sensing. We proposed a versatile
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Fig. 7: Distribution of the energy-based localization error. The
median is 6 cm, and 7.45% of all samples are outside the plot,
spread between 50 cm and 25m.

blinky architecture that is low-cost, low-power, versatile, and
can potentially be reused in the context of asynchronous
wireless microphone arrays. We demonstrated that the blinky
sensing paradigm is suitable for a wide range of applications.
We presented the result of a practical experiment where a
blinky is used to obtain high-quality voice activity information.
The resulting beamforming yields state-of-the-art performance
in terms of SDR and SIR. Next, a preliminary simulation-based
experiment suggests that blinkies can be successfully used for
sound source localization.

So far, we have focused on single-source scenarios for
simplicity. In the future, we will investigate ways of demixing
blinky signals created by multiple sources so that the algo-
rithms developed here can be applied. Another benefit would
be to alleviate the requirement that a blinky be present in the
vicinity of the source for the blinky-informed beamforming.
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