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Abstract—In this paper, we propose a method of weakly labeled
learning of bidirectional long short-term memory (BLSTM) using
connectionist temporal classification (BLSTM-CTC) to reduce the
hand-labeling cost of learning samples. BLSTM-CTC enables
us to update the parameters of BLSTM by loss calculation
using CTC, instead of the exact error calculation that cannot be
conducted when using weakly labeled samples, which have only
the event class of each individual sound event. In the proposed
method, we first conduct strongly labeled learning of BLSTM
using a small amount of strongly labeled samples, which have the
timestamps of the beginning and end of each individual sound
event and its event class, as initial learning. We then conduct
weakly labeled learning based on BLSTM-CTC using a large
amount of weakly labeled samples as additional learning. To
evaluate the performance of the proposed method, we conducted
a sound event detection experiment using the dataset provided
by Detection and Classification of Acoustic Scenes and Events
(DCASE) 2016 Task 2. As a result, the proposed method improved
the segment-based F1 score by 1.9% compared with the initial
learning mentioned above. Furthermore, it succeeded in reducing
the labeling cost by 95%, although the F1 score was degraded by
1.3%, comparing with additional learning using a large amount
of strongly labeled samples. This result confirms that our weakly
labeled learning is effective for learning BLSTM with a low hand-
labeling cost.

I. INTRODUCTION

Sound event detection (SED) is important for realizing
security and autolabeling systems for movie contents by un-
derstanding various sounds. The objective of SED is to detect
the beginning and end of each individual sound event and to
identify its event class. For example, Fig. 1 indicates that the
SED system outputs a label which represents the beginning
and end of phone ringing when a sound of phone ringing is
input to the SED system.

One of the conventional approaches to SED is to use
non-negative matrix factorization (NMF) [1][2]. In the NMF
approach, the detection model can be trained using a small
amount of learning data by linear processing. However, the
detection model cannot achieve good performance in practi-
cal tasks. Another approach is to use deep neural networks
(DNNs) [3]. The detection model using nonlinear processing
achieves good performance for unknown real data. In partic-
ular, a method using bidirectional long short-term memory
(BLSTM) [4] achieved good performance for the SED task in
Detection and Classification of Acoustic Scenes and Events
(DCASE) 2016 [5]. However, the detection model requires a
large amount of learning data to optimize its parameters. For

Fig. 1. Sound event detection.

Fig. 2. Strong label and weak label.

learning DNN including BLSTM, a large amount of “strongly
labeled” samples, in which the beginning and end of each
individual sound event and one of the predefined sound event
classes are hand-labeled as shown in Fig. 2, are needed.
Preparing this hand-labeled learning data is labor intensive
and time-consuming, so a method of learning using “weakly
labeled” samples, in which only event sound class is labeled
as shown in Fig. 2, is necessary.

In this paper, we describe the weakly labeled learning of
BLSTM. To realize it, we focus on the connectionist temporal
classification (CTC) [6]. Since the exact error calculation to
update the parameters of BLSTM cannot be conducted when
using weakly labeled data, we introduce loss calculation using
CTC instead of it. Thus, we propose a weakly labeled learning
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Fig. 3. Recurrent neural network.

method of BLSTM using connectionist temporal classification
(BLSTM-CTC). In the proposed method, we first conduct
strongly labeled learning of BLSTM using a small amount of
strongly labeled samples as initial learning. Since it is difficult
to learn BLSTM using only weakly labeled samples, we use
strongly labeled learning before weakly labeled learning. We
then conduct weakly labeled learning of BLSTM based on
CTC using a large amount of weakly labeled samples as
additional learning. BLSTM-CTC updates the parameters of
BLSTM by the loss calculation of CTC. This enables us to
improve the SED accuracy of the initially learned BLSTM.
To evaluate the performance of the proposed method, we
conducted an SED experiment using the dataset provided by
DCASE 2016 Task 2.

II. RECURRENT NEURAL NETWORK

A. Overview of recurrent neural network

The detection target of SED is the beginning and end of
each sound event and the class of these sounds. Because it
includes time information, a recurrent neural network (RNN)
[7] that can deal with time-series data is often used in SED.
RNN consists of an input layer, a hidden layer and, an output
layer. Fig. 3 shows that an output in time-frame t = n is
determined by using information of an input in t = n and a
hidden layer in t = n − 1. The following formula describes
this process.　

ht = f(W1xt +Wrht−1 + b1) (1)

yt = g(W2ht + b2) (2)

xt denotes an input sequence of feature vectors. Moreover, ht

represents a hidden layer vector, and yt represents an output
layer vector. Wi and bi respectively denote the input weight
matrix and bias of the i-th layer. Wr represents a recurrent
weight matrix. f and g represent activation functions of the
hidden layer and output layer, respectively. By this process, it
can determine outputs by considering the information of the
correlation among the previous time frames.

B. Bidirectional long short-term memory

RNN has a problem that good performance cannot be
obtained when applying a long time-series data, because of
the vanishing gradient problem [8]. To solve this problem,
long short-term memory (LSTM) [9], which is the RNN
incorporated into the functions of cells to adapt to long time-
series data, was proposed. As shown in Fig. 4, LSTM consists

Fig. 4. Long short-term memory.

of a memory cell st and three gates, namely, an input gate
gI
t , a forget gate gF

t , and an output gate gO
t . Each gate g∗

has a value between 0 and 1. The value 0 means that the gate
is closed, and the value 1 means that the gate is open. The
hidden layer output ht in Eq. (1) is replaced by Eqs. (3) to
(7).

gI
t = σ(WIxt +WI

rht−1 + st−1) (3)

gF
t = σ(WFxt +WF

r ht−1 + st−1) (4)

st = gI
t ⊙ f(W1xt +Wrht−1 + b1) + gF

t ⊙ st−1 (5)

gO
t = σ(WOxt +WO

r ht−1 + st−1) (6)

ht = gO
t ⊙ tanh(st) (7)

In these equations, W and Wr denote input weight matrices
and recurrent weight matrices, and the superscripts I , F , and
O denote the input, forget, and output gates, respectively. ⊙
means point-wise multiplication, and σ represents a logistic
sigmoid function.

In this paper, we use bidirectional LSTM (BLSTM) [10],
which is a kind of LSTM and contains both forward hid-
den layers and backward hidden layers, because SED using
BLSTM [4] achieved good performance in DCASE 2016.

C. Problem when applying BLSTM to SED

A large amount of strongly labeled data are needed to
learn BLSTM. Preparing them is labor intensive and time-
consuming, since the hand-labeling is hard. Therefore, we
apply weakly labeled learning, which enables us to learn
BLSTM with a low hand-labeling cost.

III. PROPOSED METHOD

A. Overview of SED using BLSTM

Fig. 5 shows the processing of SED using BLSTM in
our proposed method. First, we divide an input signal into
25 ms windows with a 40% overlap, and calculate a log
filterbank feature for each time frame. We then input the
feature into BLSTM. The input information of the feature is
propagated to the hidden layer, and event presence probability
is output at every frame for each event class. A label of the
beginning and end of a sound event and its sound event class
are determined by a threshold-based method for each event
probability sequence. This model is constructed with reference
to the method using BLSTM in DCASE 2016 [4].
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Fig. 5. SED using BLSTM in the proposed method.

Fig. 6. Training processing of the proposed method.

B. Proposed training method of BLSTM

In the proposed method, the BLSTM is learned by using
the training data generated from a small amount of strongly
labeled samples as initial learning. After that, it is learned by
using those generated from a large amount of weakly labeled
samples as additional learning, as shown in Fig. 6. The detailed
explanation is given as follows.

1) Initial training using strongly labeled data: An overview
of initial learning using strongly labeled data is shown in
Fig. 7. This figure represents the error calculation between
a strong label and a label detected by BLSTM. The error
is calculated on the basis of softmax-cross entropy, and the
parameters of the BLSTM are updated so that the error is
reduced.

2) Additional training using weakly labeled data: An
overview of additional training using weakly labeled data is
shown in Fig. 8. This figure shows the loss calculation between
a weak label and the event probability sequence output by
the BLSTM. The loss is calculated by using CTC, and the
parameters of the BLSTM are updated so that the loss is
reduced.

We explain about loss calculation using CTC. In Fig. 8, the
horizontal and vertical axes represent the time and state of a
sound event, respectively. The states consist of “occurred” and
“not occurred” for Event 1 and “blank”. The state of “blank”
is regarded as a wild card, which means that whether the
event occurs or not is not determined. We omitted the state

Fig. 7. Error calculation using strongly labeled data.

Fig. 8. Loss calculation by CTC using weakly labeled data.

of “blank” in Fig. 8 for simplicity, although we actually used
these three states in the calculation. Loss calculation using
CTC is conducted by using the probability sequence of Event
1 output from BLSTM. Each arrow indicates a transition of
the state of event in each frame. The loss calculation using
CTC is represented by Eqs. (8) and (9).

p(π|x) =
T∏

t=1

yt
πt

(8)

p(l|x) =
∑

π∈B−1(l)

p(π|x) (9)

The probability p(π|x) of the path π when the input of
BLSTM is x is calculated using Eq. (8). p(π|x) is obtained
as a product of yt

πt
that denotes a probability of the state

πt on the path π at the frame t. The probability is obtained
from the event probability sequence output by BLSTM. In
Fig. 8, when t = 2, the state π2 on the path represents “not
occurred”, and y2

π2
represents a probability of ”not occurred”

in the frame t = 2. The probability p(l|x) of the state sequence
l obtained from the weak label when the input of BLSTM is
x is calculated using Eq. (9). p(l|x) is obtained as a sum of
p(π|x). B−1(l) is a set of the paths that become the same
as l by removing the blank and the contiguous state from
each path. In Fig. 8, the state sequence of “not occurred”,
“occurred”, and “not occurred” is obtained from the path.
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TABLE I
EXPERIMENTAL CONDITIONS (BLSTM)

Learning rate strongly lebeled learning: 0.0005
weakly labeled learning： 0.00001

Gradient clipping norm strong labeled learning: 5
weakly labeled learning： 1

Batch size strongly labeled learning: 50
weakly labeled learning： 1

Epoch strongly labeled learning: 20
weakly labeled learning： 5

Hidden layer size 400
# of hidden layers 2

TABLE II
EXPERIMENTAL CONDITIONS (AUDIO DATA)

Sampling rate 44100 Hz
SNR −6, 0, 6 dB
feature 39 Mel-filter bank outputs
Frame size 25 ms
# of event class 11
# of learning data 12600 (=11 sound events
for initial learning × 5 samples × 220 patterns)
# of learning data 2200 (=11 sound events
for additional learning × 20 samples × 10 patterns)
Generated data length 5 s
# of evaluation data 54 samples
Evaluation data length 120 s

When the loss − log p(l|x) becomes small, the state sequence
obtained from the event probability sequence output by the
BLSTM corresponds to the state sequence l. The parameters
of the BLSTM are updated by minimizing − log p(l|x) by
using the back propagation algorithm. By this loss calculation
using CTC, BLSTM can be learned using weakly labeled data.

IV. EXPERIMENT

A. Experimental conditions

An Experiment was conducted to evaluate the effectiveness
of our proposed method using weakly labeled data. We used
development and evaluation datasets provided by DCASE
2016 Task 2. There are only 20 clean samples per sound
event in the development dataset. Because this dataset is
insufficient to learn BLSTM, we artificially generated our own
training data from the development dataset with reference of
the method using BLSTM [4].

The detailed conditions of the experiment are summarized
in Tables I and II. We randomly divide the 20 samples into 4
subsets. The learning data are then generated for each subset
as follows: 1) randomly extract the 5 s length background
noise from the development dataset, 2) randomly select a
clean sound sample from the development dataset, 3) add
the selected sample to the extracted background noise at the
signal to noise ratio (SNR) that is the same as that for the
evaluation dataset, and 4) repeat Steps. 2) and 3) at once.
By this processing, we obtained 48400 (11 sound events ×
20 samples × 220 addition patterns) learning data that each
includes two sound events. The strong and weak labels of
these data are automatically given by the labels of the 20

Fig. 9. F1 score for each learning method.

Fig. 10. Error rate for each learning method.

samples, therefore the labeling cost of the 20 samples becomes
important.

In the experiment, we compare the four BLSTM learning
methods.

(i) Strongly/all: we conduct strongly labeled learning of
BLSTM by using the 48400 data generated from all (20)
the samples.

（ii）Strongly/small: we conduct strongly labeled learning of
BLSTM by using the 12100 data generated from the
small (5) samples. This corresponds to initial learning
of the proposed method.

（iii） (Proposed method) strongly/small + weakly/all: for
the BLSTM learned by (ii), we additionally conduct
weakly labeled learning using 2200 data (11 sound
events × all 20 samples × 10 addition patterns) ran-
domly selected among the 48400 data.

（iv）Strongly/small + strongly/all: for the BLSTM learned
by (ii), we also additionally conduct strongly labeled
learning using the same 2200 data.

The evaluation dataset provided by DCASE 2016 Task 2
has 120 s length audio data. In the evaluation, we divide one
audio data into 24 audio data with 5 s lengths. The evaluation
is event-based and segment-based, where F1 score and error
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rate are utilized as evaluation criteria [11].

B. Results of experiment and analysis

We first show the result of the learning method (i). The
segment-based (Seg.) and event-based (Ev.) F1 score are
69.6% and 60.6%, respectively. The segment-based and event-
based error rate are 0.4638 and 0.6717, respectively. This
performance is the best possible performance of the SED using
BLSTM described in Sec. 3.A and is ranked the fourth (Ev.)
or fifth (Seg.) among the methods submitted to DCASE 2016
as shown in Fig 11.

We next compare the learning methods (iii) with (ii) and
(iv) in Figs. 9 and 10. All results are averaged over 4 subsets.
Figs. 9 and 10 show that the proposed learning method (iii)
achieved better performance than the learning method (ii) for
all evaluation criteria. It means that weakly labeled learning
is effective for learning BLSTM. On the other hand, the
performance of the proposed learning method (iii) degrades
compared with the learning method (iv). It means that it
is difficult for weakly labeled learning to achieve as good
performance as that of strongly labeled learning with the same
number of samples. We furthermore compared the perfor-
mance of the proposed method with the methods submitted to
DCASE 2016. Fig. 11 shows the performance ranking for each
evaluation criterion. The figure confirms that the proposed
method is located the fifth (Ev.) or the sixth (Seg.) in the
ranking. This is reasonable because we used a relatively simple
BLSTM architecture and weakly labeled learning.

Finally, we examine the hand-labeling cost for the learning
methods (ii), (iii), and (iv). A weak label with only its
event sound class can be easily attached by listening to each
sequence at once. If an event is randomly located in a signal of
5 s long, we need an average of 2.5 s to label it. On the other
hand, to obtain a strong label with the beginning, end and
class of each sound event, it is necessary to listen to the each
sequence repeatedly. Thus, it takes much longer time than the
weak label. For example, when we actually performed strong
and weak labeling of the data used in [12][13], The strong
labeling took 20 times as long as the weak labeling. According
to this fact, when the labeling cost (time) of the method (ii)
is normalized to 1, the labeling cost of the proposed method
(iii) is 1.15 (= 1 + 3/20), whereas that of the method (iv)
is 4 (= 1 + 3). Fig. 12. represents the relationship between
the segment-based F1 score and the labeling cost for each
method. By comparing, the F1 score of the proposed method
(iii) is improved by 1.9% with 15% higher labeling cost over
the method (ii).With the method (iv), we confirm that the
labeling cost of the proposed method (iii) is reduced by 95%
(= (1 − 0.15/3) × 100), although the F1 score is degraded
by 1.3%. This result confirms that weakly labeled learning
is effective for learning BLSTM with reduction of the hand-
labeling cost by 95%.

V. CONCLUSION

In this paper, we proposed weakly labeled learning of
BLSTM-CTC to reduce the hand-labeling cost of learning

(a) Segment-based F1 score.

(b) Event-based F1 score.

(c) Segment-based error rate.

(d) Event-based error rate.

Fig. 11. Comparison of the performance of the proposed method with the
methods submitted to DCASE 2016 for each evaluation criterion.

1922

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



Fig. 12. Relationship between segment-based F1-score and labeling cost.

samples. BLSTM-CTC enables us to update the parameters
of BLSTM by loss calculation using CTC, instead of the
exact error calculation that cannot be conducted when using
weakly labeled samples. We conducted the experiment using
the development and evaluation datasets provided by DCASE
2016 Task 2. As a result, the proposed method improved
the segment-based F1 score by 1.9% compared with the
initial learning mentioned above. Furthermore, it succeeded
in reducing the labeling cost by 95%, although the F1 score
was degraded by 1.3%, comparing with additional learning
using a large amount of strongly labeled samples. This result
confirms that our weakly labeled learning is effective for
learning BLSTM with a low hand-labeling cost.
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