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Abstract—Replay poses a greater threat to the Automatic
Speaker Verification (ASV) system than any other spoofing
attacks, as it neither require any specific expertise nor a
sophisticated equipment. In this paper, we propose a novel
countermeasure by modeling the replayed speech as a convolution
of genuine speech with additional impulse responses (due to the
microphone, loudspeaker, recording and replay environment). In
particular, we propose the new feature set, namely, Magnitude-
based Spectral Root Cepstral Coefficients (MSRCC) and Phase-
based Spectral Root Cepstral Coefficients (PSRCC), that per-
forms better than the baseline system (CQCC), on ASVspoof
2017 challenge database, which gives 29.18 % Equal Error Rate
(EER) on the evaluation set. The proposed feature set detects
the effect of these additional impulse responses, in the quefrency-
domain. Experiments performed on evaluation set using MSRCC
and PSRCC, with Gaussian Mixture Model (GMM) as a classifier
gives 18.61 % and 24.35 % EER, respectively. On the other hand,
Convolutional Neural Network (CNN) classifier gives 24.50 %
and 26.81 % EER, respectively. The score-level fusion of MSRCC
and PSRCC gives reduced EER of 10.65 % using GMM and 17.76
% using CNN classifier, indicates the complementary information
captured by the proposed feature sets.

I. INTRODUCTION

In replay attack, an attacker uses recorded speech samples
of the target speaker to get an access to the Automatic Speaker
Verification (ASV) system. It is very difficult to detect these
attacks if high-quality recording devices are used, because they
produce very similar replayed speech signal to that of the
natural speech signal. In addition, it is the simplest spoofing
attack as it do not require any specific knowledge in speech
processing or any sophisticated computer-aided technologies
[1]. In practice, we would like ASV system to be robust against
variations, such as, microphone and transmission channel, in-
tersession, acoustic noise, speaker ageing, etc. This robustness
makes ASV system vulnerable to replay attacks, as it tries to
nullify these effects and make replayed speech more close to
the natural speech. Hence, we would like the system to be
secure against such spoofing attacks.

One of the initial study in replay spoofed speech detection
(SSD) for the text-dependent system was reported in [2].
To verify the input speech, a choice is made based on a
set of N similarity scores is used. For detection of con-
catenated segments of speech, the study in [3] uses F0 and
Mel Frequency Cepstral Coefficients (MFCC) feature set. For
text-dependent ASV system, the spectral bitmaps are used to

determine whether the input speech is natural or replayed [4].
In [5], similar technique of average spectral bitmaps is used for
text-independent ASV system. ASV spoof 2017 challenge is
organized to develop the countermeasures of the replay attack
detection on highly heterogeneous recording and replayed
conditions. Baseline system uses Gaussian Mixture Model
(GMM) as back-end classifier with Constant Q Cepstral Coef-
ficients (CQCC) feature set that is based on the perceptually-
motivated time-frequency transform [6]. Study reported in
[7] investigated different spectral features, such as, CQCC,
MFCC, etc. and their feature-level fusion. The cross-database
experiments with the BATS 2016 ASVspoof development set
are also reported. A new feature extraction approach, namely,
Variable length Energy Separation Algorithm-Instantaneous
Frequency Cosine Coefficients (VESA-IFCC) is proposed to
exploit the usefulness of instantaneous frequency (IF) in
subband energy via Energy Separation Algorithm (ESA) [8].
The study in [9], have explored different feature set as glottal
closure instants, epoch strength and the peak-to-sidelobe ratio
of Hilbert envelope of the Linear Prediction (LP) residual.
In [10], data augmentation along with deep Residual Network
(ResNet) is used. The same study also shows experiment using
Deep Neural Network (DNN), Bidirectional Long Short Term
Memory (BLSTM) neural network as classifiers with CQCC
features.

As replay spoofing attack affects on the high frequency
spectrum, analysis using inverse-MFCC, Linear Prediction
Cepstral Coefficients (LPCC), and LPCC-residual (LPCCres)
features is performed in high frequency region [11]. In [12],
feature selection methods are applied on mean and variance
of CQCC features with Support Vector Machine (SVM) as
a classifier. DNN architectures, such as Light CNN , CNN+
Recurrent Neural Network (RNN) are used along with i-
vector+SVM, constant Q transform (CQT), and FFT as feature
representation [13]. In [14], they proposed ensemble classifier
set using multiple GMM, GMM mean supervector-Gradient
Boosting Decision Tree (GSV-GBDT) and GSV-Random For-
est (GSV-RF) classifiers. An F-ratio probing tool is used
to analyze the three variability factors, i.e., speaker identity,
speech content and playback and recording device [15]. In
these set of experiments, it is observed that replay device
contributes to overfitting risk. The fusion of high level features
using DNN with the CQCC and High Frequency Cepstral
Coefficients (HFCC) is investigated in [16]. Model fusion
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using GMM, DNN, and ResNet is performed in [17]. It is
found that multi-channel information in replayed speech is
found in low SNR regions. The analysis is performed using
Single Frequency Filtering (SFF) [18].

In the proposed method, we exploit source-filter model
of the natural speech production by modeling the genuine
speech signal as the convolution of excitation source (glot-
tal airflow) and system (vocal tract) impulse response [19].
These convolutionally combined signals cannot be distinctly
observed in the spectral-domain. Furthermore, the speech
signal may be convolved with the other system responses,
such as, transmission channel or by the flawed recording
device. In the context of replay spoof modeling, we can
model the spoofed speech signal as a convolution of the
genuine speech with the other additional elements, such as,
acoustic effects introduced by the recording device, recording
environmental conditions, replayed device and acoustics of
the environment where the attack takes place. We propose
the new feature sets, Magnitude-based Spectral Root Cep-
stral Coefficients (MSRCC) and Phase-based Spectral Root
Cepstral Coefficients (PSRCC), for SSD system. In these
features, effect of additional elements in replayed speech
is over entire quefrency-domain which is helpful in SSD
task. In addition, these sets of feature, contain very high
complementary information as their score-level fusion gives
the significant improvement in performance as compared to
the standalone MSRCC features. The proposed feature sets
perform significantly better than the baseline CQCC-GMM
SSD system.

II. SPEECH MODELING AND CEPSTRUM

A. Speech Modeling

Let s(n) be the genuine speech signal that can be modeled
as a convolution of glottal airflow, p(n) and vocal tract impulse
response h(n) [20].

s(n) = p(n) ∗ h(n), (1)

where ∗ denotes the convolution. Given genuine speech, s(n),
replay speech signal can be modeled as [21]:

r(n) = s(n) ∗ hmic(n) ∗ a(n) ∗ hspk(n) ∗ b(n), (2)

where hmic(n) and hspk(n) are impulse responses of record-
ing microphone and loudspeaker, respectively, and a(n) and
b(n) are impulse responses of recording and replayed environ-
ments, respectively. Further, Eq. (2) can be simplified as,

r(n) = s(n) ∗N(n), (3)

where N(n) = hmic(n)∗a(n)∗hspk(n)∗b(n). In this study, we
aim to detect these extra convolved elements for which we can
apply homomorphic signal processing techniques. Generally,
there are two homomorphic techniques, namely: 1) The system
that transfers convolutional vector space into additive vector
space [22], and 2) The system which maps convolutional
vector space into another convolutionally combined vector
space [23]. The purpose of both the homomorphism is to

separate the convolutionally combined signals by compressing
the impulse responses w.r.t. the impulse train of the glottal
pulse.

B. Logarithmic vs. Spectral Root Cepstrum

To evaluate the cepstrum, we map convolutionally combined
signals, s(n) = p(n) ∗ h(n) to additively combined signals,
ŝ(n) = p̂(n)+ĥ(n), so that we can distinctly observe the effect
of impulse train p(n) and impulse response of the system h(n).
This transformation should take place such that p̂(n) remains
the train of pulses with similar duration as p(n), but ĥ(n) is
more time-limited than h(n). The cepstrum ŝ(n) of the signal
s(n) can be obtained by inverse Z transform of log of the Z
transform of the signal. Z-transform of the signal followed by
log ensures the transformation in additive vector space. Hence,
cepstrum of the replayed speech can be expressed as:

r̂(n) = ŝ(n) + N̂(n). (4)

To obtain spectral root cepstrum, convolutionally combined
signal, s(n) = p(n) ∗ h(n) is mapped to another convolution-
ally combined signal, š(n) = p̌(n) ∗ ȟ(n), such that the new
convolutionally combined vectors are more easily separable. In
spectral root cepstrum, logarithmic operator during cepstrum
computation is replaced by exponent γ. Z transform maps the
convolutional vector space into multiplicative vector space to
give S(z) = P (z) · H(z). Then, Š(z) = [P (z) · H(z)]γ =
P γ(z) ·Hγ(z),

∴ Š(z) = P̌ (z) · Ȟ(z). (5)

For above set of equations, there is a one-to-one mapping
between the time-domain vectors and the Z-domain vectors.
In addition, there is an implicit assumption that s(n) is a real
and stable sequence. Taking inverse Z transform of Eq. (5),
we get,

š(n) = p̌(n) ∗ ȟ(n), (6)

where š(n) is known to be spectral root cepstrum.

Fig. 1. Spectral root cepstrum of synthetic (a) h(n), (b) p(n), (c) N(n)
(impulsive), (c) N(n) (white Gaussian noise), (e) s(n) and r(n) for impulsive
noise, and (f) s(n) and r(n) for white Gaussian noise (highlighted portion
indicates effect of N(n) component).
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Fig. 2. Functional block diagram of proposed MSRCC and PSRCC feature extraction methodology.

Since Ŝ(z) = log (S(z)) and Š(z) = (S(z))γ , Š(z) is
related to Ŝ(z) by,

Š(z) = eγ·Ŝ(z) =

−∞∑
n=0

(γŜ(z))n

n!
, (7)

∴ š(n) = δ(n)+γŝ(n)+
γ2

2
ŝ(n)∗ŝ(n)+

γ3

3
ŝ(n)∗ŝ(n)∗ŝ(n)+....

(8)
From Eq. (8), we can observe that even though s(n) is of
limited duration, š(n) will be having infinite duration. For
genuine speech signal s(n) and spoofed speech signal r(n),
spectral root cepstrum can be given as,

š(n) = p̌(n) ∗ ȟ(n), (9)

ř(n) = š(n) ∗ Ň(n) = p̌(n) ∗ ȟ(n) ∗ Ň(n). (10)

From above set of equations, we can analyze the effect of
N(n) in logarithmic vs spectral root cepstrum. As shown in
Eq. (4), N̂(n) is additive to ŝ(n), its effect in r̂(n) will have
limited support. While in Eq. (10), Ň(n) is convolved with
š(n). Hence, effect of Ň(n) spreads across entire quefrency-
domain. This property can be validated from Eq. (8), as it
shows that spectral root cepstrum is the linear combination
of convolution of logarithmic cepstrum. Hence, additively
combined components of logarithmic cepstrum are squeezed in
spectral root cepstrum due to convolution. The same analysis
is demonstrated in Figure 1. We have chosen 4 synthetic
signals, h(n) (Figure 1a), p(n) (Figure 1b), N(n) impulsive
(Figure 1c), and N(n) white Gaussian noise (Figure 1d).
We depicted two signals, i.e., s(n) = h(n) ∗ p(n) and
r(n) = h(n) ∗ p(n) ∗ N(n) in each Figure 1e (N(n) is
impulsive) and Figure 1f (N(n) is white Gaussian noise).
The effect of N(n) is present across the quefrency domain
because of its convolution with s(n). However, in logarithmic
cepstrum, the effect of N(n) is concentrated in particular
region because of addition of cepstrums (Eq. (4)). Hence,
spoofed speech can be discriminated well in spectral root
cepstrum than the logarithmic cepstrum.

III. PROPOSED FEATURE EXTRACTION

It has been observed that the average auditory nerve firing
rate shows an overshoot at the onset of an input signal.
In addition, studies shows that the human auditory system
appears to focus on the onset of incoming power envelope
rather than the falling edge of the same power envelope [24],
[25]. Thus, the human auditory system can be modeled by the

functional relationship between the onset firing rate of auditory
neurons and Sound Pressure Level (SPL). Studies have shown
that the given relationship can be approximated by power law
nonlinearity [26], [27]. Another advantage of this nonlinearity
is that its asymptotic response to the lower amplitude signals
approaches to zero rather than negative infinity unlike in
MFCC [28]. In addition, it approximates the psychophysical
transfer function which relates the physical intensity of sensa-
tion to perceived intensity using direct magnitude estimation
procedures [29]. Empirically, it is found that various values of
gamma gives better speech recognition accuracy for different
noise models [30].

In this study, we propose the feature that uses power law
non linearity for SSD task. Empirically, it has been observed
that it gives better classification accuracy for γ=− 1

7 , as it may
detect relevant variability due to N(n) in a spoofed speech.
MSRCCs of the time-domain signal s(n) can be obtained by
the inverse transformation of spectral energy coefficients raised
to certain a exponent γ. Discrete Cosine Transform (DCT) [31]
is used to take inverse transformation as it transforms the N
real coefficients onto q real independent cepstral coefficients
such that q � N , which extracts the significant information.
Mathematical expression of the proposed feature set is given
as:

MSRCC(q) =
M∑
m=1

(MFM(m))
γ
cos

[
q(m− 1

2 )π

M

]
, (11)

where the Mel Frequency Magnitude (MFM) spectrum is
defined as:

MFM(m) =
K∑
k=1

|S(k)|2Hm(k), (12)

where S(k) is the k-point DFT of signal s(n), Hm(k) is the
triangular weighting-shaped function for the mth Mel scaled
bandpass filter.

Information contained in the phase part of STFT is taken
into account by PSRCC. As shown in Figure 2, in the devel-
opment of PSRCC, spectral energy coefficients are replaced
by the unwrapped phase. Mathematically,

PSRCC(q) =
M∑
m=1

(MFP (m))
γ
cos

[
q(m− 1

2 )π

M

]
, (13)

where the Mel Frequency Phase (MFP ) spectrum is defined
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as:

MFP (m) =

K∑
k=1

]S(k)Hm(k), (14)

where k is the DFT index.

IV. EXPERIMENTAL RESULTS

In this Section, we describe the development of SSD using
the proposed feature sets. The experiments are performed on
the ASV spoof 2017 challenge database. The full database
contains three subsets: training, development (dev), and eval-
uation (eval) set. The details of ASV spoof 2017 is given in
[32], [33].

A. Effect of Gamma Values

We extracted MSRCC features for the frequency range of 6-
8 kHz and PSRCC features for the entire auditory frequency
range. The 13-dimensional (D) static MSRCC and PSRCC
features along with ∆ and ∆∆ coefficients are used to get
39-D feature vector. Total 40 triangular filters along with the
Hamming window of 20 ms duration and 50 % overlap are
used in both the feature extraction process. The reason behind
selecting the 6-8 kHz frequency range for MSRCC feature
extraction is that in this range noise magnitude spectrum
is more dominant than the speech signal. We perform the
experiment for various gamma values. Figure 3, shows the
effect of various gamma values on the SSD system. We found
empirically that γ=− 1

7 is the best choice for both the feature
sets.

Fig. 3. Bar chart representation showing the effectiveness of gamma values
(Dotted ellipse indicates relatively better result for γ = −1/7).

B. Effect of Feature Dimension

We analyze the effect of dimension of MSRCC and PSRCC
feature vectors on SSD. In particular, the SSD system with
feature dimensions ranging from 21 to 57 (static+∆+∆∆)
and 512 Gaussian mixture components is studied. The best
choice of gamma from the last experiment is selected (γ=− 1

7 ).
Figure 4 shows the effect of feature dimension on SSD system.
We observe that 39-D (13-static+13-∆+13-∆∆) features are
sufficient and give relatively best results.

Fig. 4. Bar chart representation showing the effectiveness of feature dimension
(Dotted ellipse indicate relatively better result for 39-D feature vector).

C. Effect of Number of Gaussian Mixture Components

Furthermore, we examine the effect of the number of Gaus-
sian mixture components. GMM is trained using the training
set. We found that the 256 and 512 Gaussian components
gave the best results for 39-D PSRCC and MSRCC feature
sets, respectively. The Figure 5 shows the effectiveness of the
number of Gaussian components on the SSD system.

Fig. 5. Bar chart representation showing the effectiveness of number of
Gaussian components in GMM (Dotted ellipse indicate relatively better result
for 256 and 512 components for PSRCC and MSRCC respectively).

D. SSD system using GMM Classifier

In GMM classification, two models are used to represent
natural and spoofed speech classes. GMM for each class has
512 and 256 components for MSRCC and PSRCC, respec-
tively. GMM is trained using 30 iterations of Expectation Max-
imization (EM) algorithm. To explore possible complementary
information to that of magnitude part alone, the score-level
fusion of MSRCC and PSRCC is investigated. The results of
the SSD on development set and evaluation set are presented
in Table I.
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TABLE I
RESULT (IN % EER) FOR DEV AND EVAL SET

System Dev Eval
CQCC-GMM 12.11 29.18
MFCC-GMM 11.21 31.30

MSRCC-GMM 8.53 18.61
PSRCC-GMM 35.53 24.35

MSRCC + PSRCC (GMM) 6.58 10.65
MSRCC-CNN 3.05 24.84
PSRCC-CNN 36.21 26.81

MSRCC + PSRCC (CNN) 2.63 17.76

Fig. 6. DET curves for (a) development set and (b) evaluation set of ASV
spoof 2017 challange database.

E. SSD System using CNN Classifier

We attempt to use CNN as a classifier to differentiate
between the genuine and spoofed speech using MSRCC and
PSRCC features. The 13-D static, ∆ and ∆∆ are extracted,
resulting in 39-D input feature vector. CNN consists of the
three convolutional layers, one max-pooling layer and, three
fully-connected layers [16]. All the three convolutional layers
have 128 filters and the stride length of 1, whereas max-
pooling layer has the kernel of size 1 × 2 and stride of size
1 × 2. The network is trained to minimize the cross entropy
loss for 70 epochs with an Adam optimization [34] and a
learning rate of 0.0001, using an effective batch size of 64.
This makes a batch of (64×39×F ) as an input vector to the
CNN and (64 × 2) generated probabilities using the softmax
activation function as an output of the network, with F being
a fixed number of frames. Out of 70 epochs, the best model
having the least EER on the development and evaluation set are
reported in the Table I. Figure 6 shows all the DET curves for
development and evaluation set of ASV spoof 2017 database.

V. SUMMARY AND CONCLUSIONS

The spoofing attacks degrade the performance of ASV
system and hence, it is necessary to detect them. In this study,
we proposed MSRCC and PSRCC feature sets to detect replay
spoofed speech. The proposed feature uses the spectral root
cepstrum to characterize the natural and replay speech. The in-
dividual system is developed and then fused at the score-level
using GMM and CNN classifiers. These feature sets contain
significant complementary information resulting in improved
system performance. The proposed feature set performs better
than the ASVspoof 2017 challenge baseline CQCC system.
Our future plan is to explore different frequency scale, various

filterbank, and different classifiers, such as BLSTM, SVM, etc
for the SSD task.
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