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Abstract—Vessel segmentation from the fundus retinal images
is highly significant in diagnosing many pathologies related to eye
and other systemic diseases. Even though there are many methods
in the literature focusing on this task, most of these methods
are not focusing on the small peripheral vessels segmentation.
In this paper, we propose a new approach based on curvelet
transform and line operators which can segment the small
peripheral vessels with very high accuracy resulting in a higher
sensitivity compared to the other state-of-the-art methods. In the
proposed approach, the contrast between the retinal vessels and
the background pixels is enhanced by applying a series of image
processing steps involving color space transformation, adaptive
histogram equalization, and anisotropic diffusion filtering. Then
by using the modified curvelet transform coefficients, the retinal
vessel edge contrast is further enhanced. Finally, the vessels are
segmented out by applying the line operator response, followed
by suitable thresholding to obtain the segmented vessels. Post
processing is carried out to remove the scattered unwanted
background pixels. The performance of the method is compared
against the other state-of-the-art methods using DRIVE as a
testing database. An average sensitivity, specificity, accuracy and
positive predictive value of 0.7653, 0.9735, 0.9542 and 0.7438 are
respectively achieved.

I. INTRODUCTION

Vessels segmentation from retinal images has remained
a challenging research topic for the last few years. The
information that is obtained from the segmented vessels like
vessel width, vessel tortuosity, new vessels formation on the
optic disc and elsewhere, etc. are of great significance in the
field of automatic retinal image analysis. One of the main
application of the vessel segmentation is in the development
of automated systems that could detect the presence of various
pathologies like hypertension, glaucoma, diabetic retinopathy
(DR), macular edema etc., using the retinal fundus image.
The retinal vessels undergo significant changes in its standard
structure when the particular subject is under the influence of
any such pathologies. A very prominent change in the vessel
structure in the form of variation in the vessel tortuosity and
presence of new vessels are visible in the retinal image affected
by severe DR. Also retinal vessels could be used as a reference
for detecting other vital structures like optic disc and fovea in
the retinal image.

Automatic vessel segmentation methods can be classified
into two categories: supervised and unsupervised. The super-
vised techniques need labeled images for the training phase,
wherein a system (machine learning based or deep learning
based) is first trained on many training images. Once the

system is trained, the performance of the system is evalu-
ated on a different (mutually exclusive) testing set. Recently
there have been a few supervised methods based on deep
learning [1], [2], [3] that have achieved better segmentation
performance compared to other methods (both supervised and
unsupervised). The significant disadvantages of deep learning
based methods are the computational complexity and resources
required for the training and testing phase. Also since the
number of manually segmented versions of the vessels (taken
as ground truths) is limited (20 in STARE database [4] and
40 in DRIVE database [5]), the images used in training phase
are limited. Various augmentation methods are then used to
increase the number of samples in the training sets. This
limitation results in better performance of the technique on
one database (from which the images are included in the
training set), but a reduced performance on another database
(for images not included in the training set).

In this paper, we propose a new unsupervised vessel
segmentation technique, which can segment the small/tiny
vessels along with the other main vessels. Since the method
is unsupervised, the database size restrictions are negotiated.
This method is an improved version of our previous method
discussed in [6]. The main advantage of the current method
over our previous method is a higher sensitivity (SE) and
positive predictive value (PPV ). The proposed method can
segment more vessel pixels belonging to the small/tiny vessels.

This paper is organized as follows. Section II discusses a
few recent supervised and unsupervised techniques that are
focused on the same task of vessel segmentation. In section
III, the proposed algorithm is detailed. Section IV reports the
performance and comparison of the proposed method with
other state-of-the-art methods including our previous method
[6]. Section V concludes this paper and portrays the future
direction of this work.

II. RECENT ADVANCEMENTS IN VESSEL SEGMENTATION

Recently, there have been significant research interests in
the field of automatic retinal image analysis, specifically the
retinal vessel segmentation. With the advancement of the
deep learning techniques, this research problem has become
more interesting. The retinal vessel segmentation approaches
can be grouped into two broad categories: supervised and
unsupervised. The supervised method relies on the quality
and correctness of the ground truth images that are act-
ing as the reference standard for these methods. In [1], a
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Fig. 1. Preprocessing: First row shows the input retinal images (‘01 test.tif ’, ‘02 test.tif ’ and ‘03 test.tif ’) from DRIVE database, the second row shows
the respective masks generated and the third row presents the final pre-processed image (‘Ip’)

deep learning based vessel segmentation is discussed. They
have used convolutional neural networks (CNNs) and fully-
connected conditional random fields (CRFs) to obtain a vessel
probability map, which is then thresholded to get the binary
vessel segmentation result. They have reported an accuracy
(Acc) of 0.9470 with a sensitivity (SE) of 0.7294 on DRIVE
database. They have reported in the paper that their method
is affected by the cross-learning problem, which is due to
the limitation of the number of training images. This can
be a significant disadvantage with the supervised techniques
employed in the field of retinal image processing.

In [2], another deep learning based method is discussed.
They used a pixel level classification by classifying the pixels
in each image. The reported Acc and SE are 0.9466 and
0.7276 respectively. The main disadvantage of this method is
the time and the resources (memory, graphics processing unit
(GPU), etc.) needed for the training and testing phases. Also
since it is a pixel level classification, it is also susceptible to
the pathological regions inside the retinal images, and thus the
misclassification probability is high. Other supervised methods
are discussed in [3], [7], [8], [9], [10]. The performance
metrics of these methods are reflected in Table II.

Among the unsupervised methods, our previous method
detailed in [6] was able to achieve a segmentation Acc of
0.9518. But, this method was not able to segment small/tiny
vessels effectively. Hence the SE and positive prediction value
(PPV ) for this method was 0.7386 and 0.7162 respectively.
Our main motive to develop the proposed method is to
detect and segment the small/tiny vessels more accurately
which results in better SE and PPV . Other unsupervised
methods are discussed in [11], [12], [13], [14], [15] and their
performance metrics are also reflected in Table II in section
IV.

In this paper, we have discussed a new unsupervised method
for the vessel segmentation, which is computationally less
complicated and easy to implement. The performance of the
proposed method is superior to other supervised and unsuper-
vised state-of-the-art methods as shown in Table II in section
IV.

III. THE PROPOSED METHOD

In [6], we have discussed a vessel segmentation method
that was based on contrast enhancement of the retinal vessel
edges and then using a fuzzy C-mean to segment/extract the
vessels. The main disadvantage of this method was that it
failed to segment small/tiny vessel pixels and hence resulted
in a lower PPV value. In the proposed method we worked on
improving the sensitivity and the PPV by using a new version
of vessel edge enhancement algorithm based on fast discrete
curvelet transform (FDCT). Also, we have used a modified line
detector method using variable length with a resolution of 10◦

for segmenting/extracting vessel pixels instead of the fuzzy
C-mean classification used in [6], which skipped small/tiny
vessel pixels. The proposed approach can be abstracted by the
following steps:

A. Pre-processing stage

The method starts with a pre-processing of the input retinal
image (Iin) stage. The input RGB image is first resized to
500× 500× 3 from the original resolution of 565× 584× 3.
The resized image is then converted to the CIEL∗a∗ b color
space [16], [17] to extract the lightness information (‘L’) from
it. CIEL ∗ a ∗ b color space consists of three components,
the ‘L’ component carrying the lightness information and
the ‘a’ and ‘b’ components carrying the chromaticity or
color information. Adaptive histogram equalization [18] is
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Fig. 2. Vessel edge enhancement: a) Pre-processed image (‘Ip’) b) first vessel
enhanced sub-image (‘I1’) c) second vessel enhanced sub-image (‘I2’)

then applied to this CIEL ∗ a ∗ b converted image . Noise
is introduced as a consequence of this step. So anisotropic
diffusion filtering [19] is applied on the histogram equalized
image. The image obtained after the filtering is converted back
to RGB color space. Weighted scaling [20] is carried out to
convert the RGB converted image into a gray-scale image
(Igray) for further processing.

A retinal mask is generated to extract the field of view
(FOV). The mask generation is based on morphological opera-
tions like opening, closing, erosion, and dilation [21]. In most
retinal images, the red channel has very high pixel intensities
within the fundus region and low pixel intensities outside the
fundus region. Hence after applying the edge detection based
on Laplacian of Gaussian method [22], these morphological
operations are carried out on the red channel of the original
image (Iin). The mask generated (Imask) for few images from
the DRIVE [5] database are shown in Fig.1. The mask is then
applied on to the gray-scale converted image (Igray) to obtain
the pre-processed image (Ip).

B. Vessel edge enhancement

In order to improve the vessel edge strength, a modified
version of the method discussed in [6], based on fast dis-
crete curvelet transform (FDCT) [23] is applied on the pre-
processed image (Ip). FDCT has been used by few other
state-of-the art methods [24], [25], [26], to enhance the retinal
image contrast. FDCT is a multiscale transform that could be
used to handle the singularities present in a retinal image and
could selectively enhance the vessel edge contrast compared
to the background pixels. Ip in the spatial domain can be
represented as Ip(t1, t2), where 0 ≤ t1, t2 ≤ n. 2-D FFT is
applied on Ip to obtain the Fourier samples, Îp[n1, n2], where
−n
2 ≤ n1, n2 ≤ n

2 . Multiply the Fourier samples Îp[n1, n2]
with the discrete localising window J̃j,l[n1, n2] (used for
digital coronization in wrapping based FDCT), where ‘j’ is
the scale and ‘l’ is the angle and wrap the product around the
origin to obtain Ĩpj,l[n1, n2] given by Eq.1.

Ĩpj,l[n1, n2] =W (J̃j,lÎp)[n1, n2] (1)

where the range for n1 and n2 is now 0 ≤ n1 ≤ Z1,j and n2 <
Z2,j . Z1,j ∼ 2j and Z2,j ∼ 2j/2 are constants. Finally inverse
2-D FFT is applied to each Ĩpj,l to obtain the discrete curvelet

TABLE I
PARAMETER VALUES FOR THE MODIFYING FUNCTION

Parameter Range Used value
w1 w1 ≥ 1 1.5
w2 w2 ≥ 1 2
w3 w3 > 0 2
a 0 < a < m

σ 1.5
p 0 < p < 1 0.5

coefficients cD(j, l, k), where k = (k1, k2) is the translation
parameter.

The FDCT coefficients obtained are then selectively am-
plified/suppressed, depending on the level of approximation
(coarse and fine) needed, that could enhance the vessel edge
contrast. There is a trade-off in selecting a particular mod-
ifying function to amplify the FDCT coefficients of the fine
approximation by suppressing the coarse approximation of the
pre-processed image, Ip. Hence compared to the modifying
function selected in [6], in this method we developed a
modifying function that can simultaneously amplify the fine
approximations and suppress the coarse coefficients of the
FDCT coefficients. Instead of a crisp decision in suppressing
the coarse coefficients to zero (which could actually leave
some vessel pixels residue), the coefficients are soft masked
to a low value compared to the other FDCT coefficients. The
modifying function ‘κ’ selected is given in Eq.2.

κ(c) =


w1.

(
m
σ

)p
, if |c| < aσ.

w2.
(
m
|c|

)p
, if aσ ≤ |c| < m.

w3, if |c| ≥ m.
(2)

where ‘c’ is the input FDCT coefficient, ‘σ’ is the noise
standard deviation of the curvelet coefficients of the relative
band which are in the same direction and scale, calculated us-
ing the method specified in [27] . ‘m’ is the maximum FDCT
coefficient of the respective band for which the modifying
parameter is calculated. w1, w2, w3, a and p used in Eq.2 are
given in Table I. These values are selected heuristically, which
resulted in a better segmentation performance (including the
small/tiny vessels). After applying the modifying function, the
vessel edge weight image (Iw1) is obtained by taking the
inverse discrete curvelet transform (IDCT).

Parallel to the above steps, a series of other image pro-
cessing steps are carried out on the pre-processed retinal
image (Ip), which are explained in Eq.3 to Eq.6. Ip is low-
pass filtered using a median filter of size 20 × 20, which is
then subtracted from the green channel of the input image
Iin, to obtain another weight image Iw2. This image is then
thresholded to detect the pixels with negative intensity values,
which is then morphologically processed to obtain the optic
disc removed and vessel edge enhanced image (I1) as shown
in Fig.2.(b). This image is then subtracted from the vessel edge
weight image (Iw1), and the output is complemented to obtain
the second vessel edge enhanced image (I2) as shown in Fig.
2.(c).

Ifiltered = LPF (Ip) (3)
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Fig. 3. Vessel edge enhancement: a) Input image (‘01 test.tif ’) from DRIVE database b) segmented vessels from ‘I1’ (‘IOut1’) c) segmented vessels from
‘I2’ (‘IOut2’) d) image obtained after applying mask e) final version of the segmented vessel image (‘Ivessel’) f) ground truth image (‘01 manual1.gif ’)

Iw2 = Iin,green − Ifiltered (4)

I1 = (Iw2 ≤ 0) (5)

I2 = (Iw1 − I1)C (6)

where ‘C’ in Eq. 6 represents the compliment taken.
These two images (I1 and I2) are used in the next step,

where we applied a modified line detection technique to detect
the retinal vessels.

C. Vessel segmentation

We have used a modified version of line detector with a
variable length ranging from lLD = 1 to lLD = 21 pixels, with
18 angles having a resolution of 10◦ each. The idea behind this
method is derived from a technique discussed in [8]. We have
increased the number of angles (to 18) and also the possible
length of the line (to 21 pixels) in this method. This resulted
in a better segmentation performance (SE and PPV ), which
could also segment the small and tiny vessel pixels from the
vessel edge enhanced images I1 and I2.

The line detector is applied on both I1 and I2 images
simultaneously by taking a sliding window of dimension
(21 × 21). When a pixel (i, j) falls within a vessel, the line
detector passing through that pixel will have a higher gray
level. The gray level for each pixel in the respective window
is evaluated for 18 different orientations using lines of fixed
length ‘lLD’. The gray level for each pixel within ‘lLD’ is
also calculated. It is found that the segmentation performance
was the best when lLD = 17 pixels.

After obtaining the largest average gray level (Lgray(i, j))
for each pixel in a particular window, it is subtracted from the
average gray level (Mgray(i, j)) of the entire pixels in that
respective window centered at (i, j) to obtain the line strength
S(i, j) for each pixel (i, j) in the images I1 and I2. S(i, j)

will be higher when a line completely lies inside a vessel and
will be lower for pixels lying outside the vessels.

The S(i, j) image is then thresholded using 2D Otsu thresh-
olding technique discussed in [28]. The thresholded images
(IOut1 and IOut2) after this step are shown in Fig.3(b-c).
Fig.3.(c) shows that IOut2 contains more small/tiny vessel
pixels in the central region of the FOV. But it also has more
false positive pixels (pixels detected as vessels that are not
vessels) near the outer boundary of the FOV. Hence we created
a binary mask having dimensions 250 × 250 centered at the
pixel (i, j) = (250 , 250). The image obtained after applying
this mask on the IOut2 is added to the IOut1 to obtain the
final version of the segmented vessel image Ivessel shown
in Fig.3.(e). Fig.3.(f) shows the ground truth image available
in the DRIVE database, which is manually segmented. Then
by applying morphological operations (like opening, closing,
erosion, and dilation) and connected component analysis [29],
the non-vessel pixels are removed.

From Fig.3.(e-f), it can be seen that the proposed method
can detect small/tiny vessels as accurately as in the manually
segmented version. Even though there are few very small
vessels missed, the information about these vessel pixels is
not as significant as the other major and small vessels in the
automatic retinal image analysis.

IV. RESULTS AND DISCUSSION

The proposed method is tested on DRIVE database [5]
images. DRIVE database was selected because it is widely
used by the researchers to report the performance of their
retinal vessel segmentation algorithms. Thus algorithms can
be compared. The performance of the proposed approach is
reported in terms of sensitivity (SE), specificity (SP ), positive
predictive value (PPV ) and accuracy (Acc). These metrics are
defined as follow:

SE =
TP

TP + FN
(7)
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SP =
TN

TN + FP
(8)

PPV =
TP

TP + FP
(9)

Acc =
TP + TN

TP + TN + FP + FN
(10)

where,
• TP = True positive (pixels segmented out from the retinal

image as vessel which are actually vessels in the ground
truth image)

• TN = True Negative (pixels segmented out from the
retinal image as non-vessel which are actually non-vessels
in the ground truth image)

• FP = False Positive (pixels segmented out from the
retinal image as vessel which are actually non-vessels
in the ground truth image)

• FN = False Negative (pixels segmented out from the
retinal image as non-vessel which are actually vessels in
the ground truth image)

The performance of the proposed approach is reported in
Table. II based on the above metrics. It can be seen from the
Table. II that the proposed method has the best SE among
the other state-of-the-art methods. The SE of the proposed
method has been improved over our previous method discussed
in [6]. The main reason for this is that the proposed method can
segment increased number of small/tiny vessel pixels along
with the other major vessel pixels. The method also has a SP
of over 97%. Compared to other unsupervised methods, the
proposed method reports the highest average Acc of 95.42%.
Even though the average Acc of the technique discussed in [8]
is higher, the SE reported is less compared to the proposed
method. It reflects a better vessel segmentation performance
to detect more small/tiny vessels pixels.

Fig. 4 shows a comparison between the proposed method
and our previous method discussed in [6] in segmenting out
the small/tiny vessels from the retinal image. It can be seen
that the proposed method is able to segment more small/tiny
vessel pixels. Hence the proposed method has a higher SE
compared to the previous method, without compromising on
the SP . This is evident from the fact that the proposed method
has a higher overall PPV of 0.7438 compared to 0.7162 for
the method discussed in [6].

Most of the state-of-the-art methods have not mentioned
the PPV achieved and hence we have not mentioned the
PPV achieved using the proposed method in the Table. II.
The overall Acc, SE, SP , and PPV of the proposed method
over the entire 40 images (including the images in the test
and training set of DRIVE database) in the DRIVE database
is 0.9538, 0.7249, 0.977, and 0.7582 respectively.

V. CONCLUSIONS

This paper presents a novel method to segment retinal
vessels accurately. A vessel edge enhancement technique using
curvelet transform and color space transformation together

TABLE II
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS

Method Year Class SE SP Acc
Huazhu et al. [1] 2016 Supervised 0.7294 – 0.9470

Melinscak et al. [2] 2015 Supervised 0.7276 0.9785 0.9466
Maji et al. [3] 2015 Supervised 0.6287 – 0.9327
Vega et al. [7] 2015 Supervised 0.7444 0.9600 0.9412

Sohini et al. [10] 2015 Supervised 0.7249 0.9830 0.9519
Fraz et al. [9] 2012 Supervised 0.7406 0.9807 0.9480
Ricci et al. [8] 2007 Supervised 0.7000 0.9600 0.9595

Proposed 2018 Unsupervised 0.7653 0.9735 0.9542
Chalakkal et al. [6] 2017 Unsupervised 0.7386 0.9769 0.9518

Zhao et al. [11] 2014 Unsupervised 0.7354 0.9789 0.9477
Fraz et al. [12] 2012 Unsupervised 0.7152 0.9759 0.9430

Al-Diri et al. [15] 2009 Unsupervised 0.7282 0.9551 –
Mendonica et

al. [14] 2006 Unsupervised 0.7344 0.9764 0.9452
Jiang et al. [13] 2003 Unsupervised – – 0.9212

Fig. 4. Comparison between the proposed approach and our previous method
[6]: a, b and c represents images from the DRIVE database, and d, e, and
f show the segmented vessel pixels respectively. The yellow colored pixels
represent the small/tiny vessels that were segmented by the proposed method,
in addition to the other vessel pixels (red) that were segmented by our previous
method.

with adaptive histogram equalization and anisotropic diffusion
filtering is applied to pre-process and enhance the vessel edge
contrast. Then by using a line operator, the segmentation of
vessel pixel is performed. The results show that the proposed
method is able to segment the small/tiny retinal vessels with
improved Acc and SE compared to other state-of-the-art
supervised and unsupervised methods. The technique is able to
segment the small/tiny vessels with the same level of accuracy
as for the major/thick vessels.

The proposed method also has a higher SE compared to
our previous method discussed in [6] and the other rival tech-
niques. The maximum SE of 0.85 is obtained for the image
‘19 test.tif’ with a PPV of 0.762 from the DRIVE database.
The minimum SE obtained on the DRIVE database is 0.7052
for the image ‘11 test.tif’ with a PPV of 0.7467. Our future
work is to use this improved version of vessel segmentation
algorithm in developing an automatic DR screening method.
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