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Abstract—Deep learning based speaker verification usually
uses a fixed-length local segment randomly truncated from an
utterance to learn the utterance-level speaker embedding, while
using the average embedding of all segments of a test utterance to
verify the speaker, which results in a critical mismatch between
testing and training. This mismatch degrades the performance
of speaker verification, especially when the durations of training
and testing utterances are very different. To alleviate this issue,
we propose the deep segment attentive embedding method to
learn the unified speaker embeddings for utterances of variable
duration. Each utterance is segmented by a sliding window
and LSTM is used to extract the embedding of each segment.
Instead of only using one local segment, we use the whole
utterance to learn the utterance-level embedding by applying an
attentive pooling to the embeddings of all segments. Moreover,
the similarity loss of segment-level embeddings is introduced
to guide the segment attention to focus on the segments with
more speaker discriminations, and jointly optimized with the
utterance-level embeddings loss. Systematic experiments on DiDi
Speaker Dataset, Tongdun and VoxCeleb show that the proposed
method significantly improves system robustness and achieves the
relative EER reduction of 18.3%, 50% and 11.54% , respectively.

I. INTRODUCTION

The key to speaker verification is to extract the utterance-
level speaker vectors with a fixed dimension for utterances of
variable duration. The extracted speaker vector is expected
to be as close as possible to the same speaker while far
from other speakers. It remains a challenge to extract the
robust speaker vectors for utterances of variable duration,
especially when the utterance duration varies greatly. The i-
vector/PLDA framework [1], [2], [3] can easily extract the
fixed dimension speaker vectors for utterances of arbitrary
duration using statistical modeling. But it suffers performance
reduction when handling short utterances [4], [5]. The reason
is that i-vector is a Gaussian-based statistical feature, whose
estimation need sufficient samples. And the short utterance
will lead to the uncertainty in the estimated i-vector.

Deep learning based speaker embedding [4], [6], [7] is
another mainstream approach to speaker verification, which
has been extensively studied recently and achieved promising
performance in short-duration text-independent task. There are
two ways to extract speaker embeddings using deep models.

One approach is averaging bottleneck features from frame-
level speaker classification networks [6]. Another approach
is directly learning utterance-level speaker embeddings with
distance-based similarity loss, such as triplet loss [4], [8] and
generalized end-to-end (GE2E) loss [7].

LSTM-based speaker embedding is one of the most impor-
tant deep speaker verification methods and has been demon-
strated to be substantially promising [9], [10]. Owing to the
powerful ability in modeling time-series data, LSTM can
effectively capture the local correlation information of speech,
which is very important for speaker verification. But it is still
challenging for LSTM to model the long-term dependency
of utterances, especially very long utterances. In addition,
in order to facilitate batch training, LSTM-based speaker
verification usually uses a fixed-length local segment randomly
truncated from an utterance to learn the utterance-level speaker
embedding in training phase, while using the average embed-
ding of all segments of a test utterance to verify the speaker
in testing phase, which leads to a critical mismatch between
testing and training. The mismatch dramatically degrades
the performance of speaker verification, especially when the
difference of durations between training and testing utterances
is large. Many methods are proposed to handle the issue of
duration variability. The attention-based pooling [11], [12]
is one of the most important technologies. But most of the
attention mechanisms are performed at the frame level, which
will lead to the “over-average” problem, especially when the
utterance is very long.

To alleviate this issue, we propose the deep segment atten-
tive embedding method to learn the unified speaker embed-
dings for utterances of variable duration. For both training
and testing, we use a sliding window to divide utterances
into the fixed-length segments and then use LSTM to ex-
tract the embedding of each segment. Finally, all segment-
level embeddings of an utterance are pooled into a fixed-
dimension vector through the segment attention, which is
used as the utterance-level speaker embedding. The similarity
loss of utterance-level embeddings is used to train the whole
network. In addition, in order to guide the segment attention
to focus on the segments with more speaker discriminations,
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we further incorporate the similarity loss of segment-level
embeddings. With the joint optimization of the segment-level
and utterance-level similarity loss, both local details and global
information of utterances are taken into account. Instead of
only using one local segment, we use the whole utterance to
learn the utterance-level embedding, which unifies the process
of training and testing and avoids the mismatch between them.

II. RELATED WORK

There are some efforts on the issue of duration variabil-
ity. For example, in the conventional i-vector systems, [13]
proposed to propagate the uncertainty relevant to the i-vector
extraction process into the PLDA model, which better handled
the duration variability. Moreover, in the deep learning based
speaker embedding systems, the complementary center loss is
proposed in [14], [15], [16] in order to solve the problem of
large variation in text-independent utterances, including the
duration variation. It acts as a regularizer that reduces the
intra-class distance variance of the final embedding vectors.
However, they don’t explicitly model the duration variability
of utterances and the mismatch between training and testing
phase still exists.

Furthermore, attention mechanisms have been utilized to
capture the long-term variations of speaker characteristics in
[11], [12]. An important metric is computed by the attention
network, which is used to calculate the weighted mean of the
frame-level embedding vectors. However, most of the attention
mechanisms are performed at the frame level, which will lead
to the “over-average” problem, especially when the utterance
is very long.

III. PROPOSED APPROACH

It is still challenging for LSTM to model the long-term
dependency of utterances, especially very long utterances. And
the mismatch between training and testing phase degrades
the performance of speaker verification, especially when the
difference of durations between training and testing utterances
is large. Therefore, we propose the deep segment attentive
embedding method to extract the unified speaker embeddings
for utterances of variable duration.

As is shown in Fig. 1, we use a sliding window with 50%
overlap to divide utterances into the fixed-length segments and
LSTM is used to extract the embedding of each segment.
Finally, all segment-level embeddings of an utterance are
pooled into a fixed-dimension utterance-level speaker embed-
ding through the segment attention mechanism. The whole
network is trained with the joint supervision of the utterance-
level and segment-level similarity loss.

A. Deep segment attentive embedding

For both training and testing, we use a sliding window
with 50% overlap to divide an utterance into the fixed-
length segments. Supposed that we get N speech segments
X = {xxx1,xxx2, · · · ,xxxN}. The sliding window length T is
randomly chosen within [80, 120] frames but the length of
segments in a batch is fixed. The vector xt

n represents the
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Fig. 1. System overview. For each training batch, there are Q×P utterances
from Q different speakers and each speaker has P utterances. We only draw
one utterance for simplicity.

feature of segment n at frame t, which is fed into the
network and the output is ht

n. The last frame of output is
used as the segment representation f(xn;w) = hT

n , where
w represents parameters of the network. The segment-level
speaker embedding is defined as the L2 normalization of the
segment representation:

en =
f(xn;w)

‖f(xn;w)‖2
. (1)

We compute the embedding vector of each segment E =
[eee1, eee2, · · · , eeeN ] according to Eq. (1). Let the dimension of the
segment-level speaker embedding eeen be de and E ∈ RN×de .

It is often the case that some segment-level embeddings are
more relevant and important for discriminating speakers than
others. We therefore apply attention mechanisms to integrate
the segment embeddings by automatically calculating the im-
portance of each segment. For each segment-level embedding
eeen, we could learn a score αααn using the segment attention
mechanism. All segment-level embeddings of an utterance are
pooled into a fixed-dimension utterance-level speaker embed-
ding through the segment attention mechanism.

For each segment embedding eeen, we apply the multi-head
attention mechanism [17] to learn a score αααn as follows:

αααn = softmax (g(eeenW1)W2) , (2)

where W1 and W2 are parameters of the multi-head attention
mechanism; W1 ∈ Rde×da ; W2 ∈ Rda×dr ; da is the attention
dim and dr is a hyperparameter that represents the number
of attention heads; g(·) is the ReLU activation function [18].
When the number of attention heads dr = 1, it is simply
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a basic attention. The normalized weight αααn ∈ [0, 1]dr is
computed by the softmax function. The weight vector is then
used in the attentive pooling layer to calculate the utterance-
level speaker embedding ẽee:

ẽee = ATE, (3)

where A = [ααα1, · · · ,αααN ] ∈ RN×dr is the attention matrix
and ẽee ∈ Rdr×de . We concat dr embeddings to build the the
utterance-level speaker embedding.

When the number of attention heads dr = 1, ẽee is simply a
weighted mean vector computed from E, which is expected
to reflect an aspect of speaker discriminations in the given
utterance. Obviously, speakers can be discriminated along
multiple aspects, especially when the utterance duration is
long. By increasing dr, we can easily have multiple attention
heads to focus on different pattern aspects from an utterance.
In order to encourage diversity in the attention vectors, [12]
introduced a penalty term Lp when dr > 1:

Lp =
∥∥ATA− In

∥∥2
F
, (4)

where In is the identity matrix where n = dr denotes
the number of rows and columns and ‖·‖F represents the
Frobenius norm of a matrix. Lp can encourage each attention
head to extract different information from the same utterance.
It is similar to L2 regularization and is minimized together
with the original cost of the system.

B. Loss function

After obtaining the utterance-level speaker embedding, we
calculate the similarity loss using the generalized end-to-end
(GE2E) loss formulation [7]. The GE2E loss is based on pro-
cessing a large number of utterances at once to minimize the
distance of the same speaker while maximizing the distance
of different speakers.

For each batch training, we randomly choose Q× P utter-
ances from Q different speakers with P utterances per speaker.
And we calculate the utterance-level speaker embedding ẽeeji
based on Eqs. (1) to (3) for each utterance. ẽeeji represents the
speaker embedding of the jth speaker’s ith utterance. And the
centroid of embedding vectors from the jth speaker is defined:

cj = Ei [ẽeeji] =
1

P

P∑
i=1

ẽeeji. (5)

GE2E builds a similarity matrix Sji,k that defines the scaled
cosine similarities between each embedding vector ẽeeji to all
centroids ck (1 6 j, k 6 Q and 1 6 i 6 P ):

Sji,k = w · cos(ẽeeji, ck) + b, (6)

where w and b are learnable parameters. The weight is
constrained to be positive w > 0, because the scaled similarity
is expected to be larger when the cosine similarity is larger.

During the training, each utterance’s embedding is expected
to be similar to the centroid of that utterance’s speaker, while

far from other speakers’ centroids. The loss on each speaker
embedding ẽeeji could be defined as:

L(ẽeeji) = − log
exp(Sji,j)∑Q
k=1 exp(Sji,k)

= log

Q∑
k=1

exp(Sji,k)− Sji,j .

(7)

And the utterance-level GE2E loss Lu is the sum of all speaker
embedding losses over the similarity matrix, shown as:

Lu(x;w) =
∑
j,i

L(ẽeeji). (8)

For the text-independent speaker verification, each extracted
segment-level embedding is expected to capture the speaker
characteristics. In order to guide the segment attention to focus
on the segments with more speaker discriminations, we further
incorporate the similarity loss of segment-level embeddings.
The segment-level GE2E loss Ls is similar to the utterance-
level GE2E loss Lu except that it takes all segment-level
embeddings as input, which could help the proposed model to
learn more effective ways of embedding fusion and accelerate
model convergence. The objective function can be formulated
as:

Ls(x;w) =
∑
j,i

∑
n

L(eji,n). (9)

Finally, the utterance-level GE2E loss, segment-level GE2E
loss and penalty loss are combined together to construct the
total loss, shown as:

L = Lu + λsLs + λpLp (10)

The magnitude of the segment-level GE2E loss and penalty
loss is controlled by hyperparameters λs and λp. With the joint
optimization of the segment-level and utterance-level GE2E
loss, both local details and global information of utterances
are taken into account. Our proposed method can extract the
unified speaker embeddings for utterances of variable duration,
which unifies the process of training and testing and avoids
the mismatch between them.

IV. EXPERIMENTS

We systemically evaluate the speaker verification perfor-
mance on DiDi Speaker Dataset, Tongdun and VoxCeleb [19]
corpora. The proposed deep segment attentive embedding is
compared with the generalized end-to-end loss based embed-
ding as well as the traditional i-vector. We use Equal Error
Rate (EER) to quantify the system performance.

A. Data

DiDi Speaker Dataset. The DiDi Speaker Dataset is a
large-scale speaker verification corpus, which contains more
than 1.8M utterances from 200K Chinese speakers in training
set. For evaluation, we use an additional 1.5K speakers with
3 enrollment utterances and 7.2 evaluation utterances per
speaker.
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Tongdun. The corpus is from the speaker verification com-
petition held by Tongdun technology company [20], which
consists of more than 120K utterances from 1, 500 Chinese
speakers in training set and 3, 000 trial pairs in test set. Most
of the training data are short utterances with average duration
of 3.7s, while utterances in test set are very long and average
duration is 20s.
VoxCeleb. The training set consists of more than 140K
utterances of 1, 251 speakers. And 37, 720 trial pairs from
40 speakers are used as evaluation data for the verification
process.

B. i-vector system

The i-vector system uses 20-dimensional MFCCs with their
first and second derivatives as front-end features. Cepstral
mean normalization is applied. An i-vector of 400 dimensions
is then extracted from the acoustic features using a 2048-
mixture UBM and a total variability matrix. Mean subtraction,
whitening, and length normalization [21] are applied to the i-
vector as preprocessing steps, and the similarity is measured
using a PLDA model with a speaker space of 400 dimensions.

C. Deep speaker embedding system

For deep speaker embedding systems, we take the 40-
dimensional filter-banks with 32-ms Hamming window and
16-ms frame shift as the input features, and each dimension of
features is normalized to have zero mean and unit variance. A
combination of 3-layer LSTM and a linear projection layer is
used to extract the speaker embeddings. Each LSTM layer con-
tains 512 nodes, and the linear projection layer is connected to
the last LSTM layer, whose output size is 256. Therefore, we
can extract 256-dimension speaker embeddings according to
the outputs of the linear projection layer. The cosine similarity
score of the pair of embedding vectors is computed to verify
the speaker. According to [7], the scaling factors w and b in
Eq. (6) are initialized to 10 and 5, respectively.

We take the LSTM-based speaker embedding system pro-
posed by Wan [7] as the baseline, which is optimized by GE2E
loss. Let us denote the baseline system as “LSTM-GE2E”.
“LSTM-GE2E” uses the local segments truncated from ut-
terances to learn the utterance-level speaker embedding. The
length of segments is randomly chosen within [120, 160], but
the length in a batch is fixed. In the testing phase, each
utterance is segmented by a sliding window of 140 frames with
50% overlap. We extract the embedding of each segment and
then average them as the speaker embedding of the utterance.
The embedding of each segment is obtained by performing a
frame-level attention pooling operator on the outputs of the
linear projection layer. Note that we also use the last frame
of outputs as the segment embedding, but the performance is
slightly worse than the attention pooling operation.

Compared to “LSTM-GE2E”, the proposed deep segment
attentive embedding system uses the whole utterance to learn
the utterance-level speaker embedding by the segment atten-
tion, which is denoted as “DSAE-GE2E”. The segment atten-
tion is implemented by performing the multi-head attention

TABLE I
SPEAKER VERIFICATION RESULTS ON TONGDUN AND VOXCELEB.

Embedding EER on Tongdun EER on VoxCeleb

i-vector 3.0 8.9

LSTM-GE2E 2.0 6.2
DSAE-GE2E-1 1.5 5.8
DSAE-GE2E-3 1.3 5.5
DSAE-GE2E-5 1.0 5.2

pooling on the segment-level embeddings. The attention dim
da is set to 128 and the attention head number dr is chosen
from [1, 3, 5]. In addition, “DSAE-GE2E” is jointly optimized
by the utterance-level and segment-level GE2E losses, as
shown in Eq. (10). The weights λs and λp of terms in Eq. (10)
are experimentally set to 0.2 and 0.001, respectively.

All deep speaker embedding models are trained from a
random initialization by an Adam optimizer [22]. The initial
learning rate is set to 0.001 and decayed according to the
performance of the validation set. For each batch training,
we randomly choose 640 utterances of 64 speakers with 10
utterances per speaker. We mention that the length of segments
in a batch is fixed. About 30M batches are used to train the
network. In addition, the L2 norm of gradient is clipped at 3
[23].

D. Results

In the following results, “LSTM-GE2E” refers to the speak-
er embedding system trained with GE2E loss. “DSAE-GE2E-
k” denotes the proposed deep segment attentive embedding
system with the multi-head attention layer of k attention heads.

The second column of the Table I shows the performance on
Tongdun test set. All deep learning based speaker embedding
systems outperform the traditional i-vector system, which
shows the effectiveness of the deep speaker embeddings. In
general, the proposed “DSAE-GE2E” consistently and signif-
icantly outperform “LSTM-GE2E”. For the multi-head atten-
tion layer, more attention heads achieve greater improvement.
“DSAE-GE2E-1” is 25% better in EER than “LSTM-GE2E”
and “DSAE-GE2E-5” outperform “LSTM-GE2E” by 50%.

The performance on VoxCeleb test set is shown in the last
column of Table I. Our proposed “DSAE-GE2E” also outper-
forms the i-vector system and “LSTM-GE2E”, which demon-
strates the effectiveness of the proposed method. “DSAE-
GE2E-1” is 6.5% better in EER than “LSTM-GE2E” and
“DSAE-GE2E-5” outperform “LSTM-GE2E” by 16.1%. The
relative EER reduction is smaller than Tongdun corpus because
there is little duration difference between VoxCeleb training
and testing utterances.

The performance on DiDi Speaker Dataset test set is shown
in Table II. Our proposed “DSAE-GE2E” also outperforms
“LSTM-GE2E”, which demonstrates the effectiveness of the
proposed method in the large-scale corpus. “DSAE-GE2E-3”
is 18.3% better in EER than “LSTM-GE2E”.

Fig. 2 shows the visualization results using t-SNE[24]. We
choose two utterances from different speakers and calculate
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TABLE II
SPEAKER VERIFICATION RESULTS ON DIDI SPEAKER DATASET.

Embedding EER (%)

LSTM-GE2E 4.0
DSAE-GE2E-3 3.27
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Fig. 2. Visualization using t-SNE. We choose two different speakers and
calculate the embedding of each segment. ‘.’ denotes each segment embedding,
‘*’ is results of our proposed “DSAE” and ‘o’ is results of averaging the
segment embeddings. Different colors refer to different speakers.

the segment embedding for each utterance. Compared with the
method of averaging each segment embedding, our proposed
“DSAE-GE2E” system can better extract speaker discrimina-
tions for the given utterance and take into account both local
details and global information of utterances.

V. CONCLUSIONS

In this paper, we propose the deep segment attentive em-
bedding method to learn the unified speaker embeddings for
utterances of variable duration. Each utterance is segment-
ed by a sliding window and LSTM is used to extract the
embedding of each segment. We learn the utterance-level
embedding by applying an attentive pooling to all segments
embeddings. Moreover, the similarity loss of segment-level
embeddings is introduced and jointly optimized with the
utterance-level embeddings loss. Experiments on DiDi Speaker
Dataset, Tongdun and VoxCeleb demonstrate effectiveness of
the proposed method. In future, we will investigate different
neural network architectures and attention strategies to obtain
greater performance improvement.
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