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Abstract—In this work, we introduce an effective loss function,
i.e., triplet-center loss, to improve the performance of deep
embedding learning methods for speaker verification (SV). The
triplet-center loss is combination of triplet loss and center loss so
that it shares superiorities of these two loss functions. Comparing
with the widely used softmax loss, the main advantage of triplet-
center loss is that it learns a center for each class, and it
requires distances between samples and centers from the same
class are closer than those from different classes. To evaluate
the performance of triplet-center loss, we conduct extensive
experiments on noisy and unconstrained dataset, i.e., Voxceleb.
The results show that triplet-center loss significantly improves
the performance of SV. Specifically, it reduces equal error rate
(EER) from softmax loss by 11.6%, 10.4% in cosine scoring and
PLDA backend, respectively.

I. INTRODUCTION

Speaker Verification (SV) is the task of recognizing the
identity of a speaker based on one or several given segments
of speech from this speaker. A common SV system mainly
consists of two steps: a) front-end feature learning to extract
low-dimensional speaker embeddings, and b) back-end em-
beddings’ similarity calculating to confirm the identity of the
speaker.

For decades, the most popular method for SV was i-vector
system [1] with Probabilistic Linear Discriminative Analysis
(PLDA) [2], [3] modeling. The i-vector based method is
trained on unsupervised fashion, and the PLDA is employed
to model features’ channel variability [4].

Recently, more attention of SV has been moved to deep
embedding learning methods. Thanks to supervised training
process, the deep learning systems such as d-vector [5] and
x-vector [6] have shown great potential, especially in the short
duration case. Some kinds of neural network architectures have
also emerged in SV field, including time-delay neural network
(TDNN) [6], [7], convolutional neural network (CNN) [8], and
long short-term memory network (LSTM) [9]. All these archi-
tectures commonly used softmax loss to learn the parameters.

Considering that SV task is an open-set recognition prob-
lem, which means there is no overlap of speakers between
the training and test set. Therefore, SV is closely related to
the metric learning problem, where ideal speaker embeddings
should be compact in the same class and be discriminative
in different classes. Although softmax loss is very suitable

for classification in close-set problem, it can not explicitly
encourage the discriminative learning of features in open-set
problem.

To overcome the weakness of softmax loss, some other
loss functions were introduced. J. S. Chung et al [10] pre-
trained the model using softmax loss at first, and then fine-
tuned it using contrastive loss. In [11], [12], angular softmax
(A-softmax) loss was introduced, which required the angles
between each sample and its ground truth class center to be
m (m is margin) times smaller than that of wrong classes.
Furthermore, M. Hajibabaei et al [13] applied additive margin
softmax loss (AM-softmax) to SV task, in which the cosine
similarity was incorporated with an additive margin to force
samples from the same speaker to be closer than those from
different speakers.

In the last few years, triplet loss for SV was first presented
in [14], [15], it encourages to find an embedding space where
the distances between embeddings from the same class (i.e.,
anchor and positive samples) are smaller than those from
different classes (i.e., anchor and negative samples) by at
least a margin m. However, triplet loss may cause problems
of much time-consuming and dramatic data expansion when
constructing triplets [16]. Center loss for SV was introduced
in [11], [17], it learns a center for each class and focuses on
reducing the distances between samples and centers from the
same class, thus it compacts intra-class variability. However,
center loss has no effect on enlarging inter-class distances.

In this paper, we introduce a novel triplet-center loss [16],
which can be regarded as union of triplet loss and center loss,
to improve SV performance. The triplet-center loss learns a
center for each class, such that samples are pulled close to
the corresponding center of the same class and meanwhile
pushed away from the other nearest center of different classes.
Different from triplet loss, triplet-center loss avoids to con-
struct and select triplets and it has no data expansion. In
addition, comparing with center loss which only focuses on
compacting the intra-class variability, triplet-center loss also
considers to enlarge the distances between different classes.
Extensive experiments on Voxceleb [18] prove that triplet-
center loss is an effective criterion for SV. Particularly, results
show that it obtains 11.6%, 10.4% relative improvements in
terms of equal error rate (EER) in cosine scoring and PLDA
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Fig. 1. A simple illustration of results caused by (a) softmax loss, (b) center loss + softmax loss, (c) triplet-center loss + softmax loss. Ideally, the softmax loss
aims to find a decision boundary of different classes. The center loss pulls samples close to their corresponding center which belongs to the same class. The
triplet-center loss not only pulls samples close to the center of the same class, but also pushes them away from the other nearest center of different classes.

backend, respectively.

II. PROPOSED METHOD

Softmax loss is commonly exploited to achieve the classifi-
cation in deep neural network. However, as illustrated in Fig. 1
(a), it might not be suitable for open-set problem like SV, since
it only focuses on finding a decision boundary of different
classes without considering the intra-class compactness of
features. Here we first introduce triplet loss and center loss,
and then derive our triplet-center loss to address this problem.

A. Triplet Loss

Triplet loss was proposed in FaceNet [19], and in [14], [15],
it was first applied to SV. Assuming that speaker embedding
is represented by f(xi) ∈ Rd, which means the i-th utterance
xi in dataset is mapped to d-dimensional vector f(xi) by the
neural network. Here, triplet loss makes that an embedding
f(xai ) (anchor) is closer to other embedding f(xpi ) (positive)
of the same speaker, meanwhile keeps f(xai ) away from
embedding f(xni ) (negative) of different speaker. Specifically,
triplet loss can be formulated as:

Ltrip =
N∑
i=1

max( 0,m+ ‖ f(xai )− f(x
p
i ) ‖

2
2

− ‖ f(xai )− f(xni ) ‖22 )
(1)

where N is number of triplets in the training set, ‖ · ‖22
is euclidean distance, m is a fixed element which requires
distance between f(xai ) and f(xpi ) smaller than that between
f(xai ) and f(xni ) by at least a margin m. In other words, the
margin m enforce a distance between different classes, leading
to more discriminative deep embeddings. Note that although
we require euclidean distance, it could also be defined as other
forms like cosine distance.

In general, there exists too many triplets to computing in
the whole training set, thus it is essential to design a strategy
for triplets selection so that the model could converge without
consuming too much time. Existing way of selection strategy
is hard mining [19], [20]. For each anchor, the hard mining
strategy chooses the “hardest” positive and negative samples
from within the mini-batch or the subset of data to make
up a triplet. Therefore, the performance of triplet loss highly
dependents on the mining strategy. Nevertheless, how to define
better “hard triplets” is still an open problem. All these factors
make triplet loss hard to train. To avoid this limitation, we

will combine it with center loss (see Section II-B) to propose
a novel triplet-center loss.

B. Center Loss

Center loss was proposed in [21]. It learns a center for each
class. As illustrated in Fig. 1 (b), it pulls samples close to
their corresponding center which belongs to the same class.
Thus the learning goal is to minimize the distances between
samples and centers from the same class. The center loss can
be defined as:

Lcen =
1

2

M∑
i=1

‖ f(xi)− cyi
‖22 (2)

where cyi ∈ Rd represents the d-dimensional center of class
yi, and ‖ · ‖22 denotes the euclidean distance. Particularly,
the centers are updated based on mini-batch with batch-size
=M . Note that the center loss can not be used independently,
otherwise the deeply learned features and centers will degrade
to zeros (at this point, the center loss is very small) [21].
The reason is that center loss only compacts the intra-class
variability without considering inter-class separability. Hence
the model must be trained based on the combination of center
loss and softmax loss.

C. Proposed Triplet-center Loss

In order to overcome the limitations of triplet loss (it is
complex to construct “good” triplets) and center loss (it dose
not consider inter-class separability), meanwhile, to exploit
the advantages of these two loss functions, we derive a novel
triplet-center loss for SV task.

Assuming that training set is {xi, yi}Ni=1, where N is
total number of samples, xi is the i-th sample and yi ∈
{1, 2, · · · , Y } is corresponding label of xi, Y is number of
classes. Let f(xi) ∈ Rd represents d-dimensional embedding
of xi, and let C = {c1, c2, · · · , cY } denotes the learnable
centers where cy ∈ Rd is center vector of y-th class. Then the
triplet-center loss can be represented as:

Ltc =
M∑
i=1

max( 0,m+ ‖ f(xi)− cyi ‖22

−min
j 6=yi

‖ f(xi)− cj ‖22 )
(3)

where M is batch-size, ‖ · ‖22 denotes the euclidean distance,
and m is margin. As illustrated in Fig. 1 (c), triplet-center
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loss wants to pull embedding f(xi) to be closer to its cor-
responding center cyi and push f(xi) away from the other
nearest negative center cj (j 6= yi). The distances between
embeddings and corresponding centers are smaller than those
from different classes by at least a margin m. Here, the triplet
can be expressed as (f(xi), cyi

, cj), thus there are only N
triplets in total. Naturally, compared with triplet loss which
has N3 triplets, triplet-center loss avoids the complexity of
constructing triplets.

On the other hand, softmax loss aims to map samples to
a class-separable space, while triplet-center loss focuses on
applying metric learning to embeddings directly. Considering
that the centers are randomly initialized, and they are updated
once in each mini-batch instead of in the whole training data.
The training process is not stable enough if using triplet-center
loss independently. Thus we also utilize softmax loss to be
a guider for better converging of triplet-center loss. The joint
version of softmax loss and triplet-center loss can be presented
as:

Lstc = Ls + λLtc (4)

where Ls is softmax loss, and weight λ is used for balancing
these two loss functions. It is worth noting that the joint loss
Lstc degenerates softmax loss when λ is set to be 0.

III. EXPERIMENTAL SETUP

A. Datasets and Acoustic Features

Dataset: We use Voxceleb to train model and evaluate
performance. There are 1,251 speakers in total. We use de-
velopment set of 1,211 speakers for training and test set
of 40 speakers for testing. Due to sampled from the real
world, Voxceleb includes background noise such as laughter
and music. It is therefore challenging to design a robust
model and an appropriate loss function to handle this complex
environment. To compare with other results on Voxceleb, no
data augmentation strategy is adopted to the dataset.

Feature: The feature extraction process follows Kaldi
toolkit [22]. The dimension of feature is 41, which includes
log mel filterbank coefficients of 40 dimensions and energy
of 1 dimension. All features are obtained from 25ms windows
with 10ms shift between frames. Furthermore, we apply mean-
normalization over a sliding window of 3s, and use voice
activity detection (VAD) to remove silent segments.

B. Model Configuration

The features from the training dataset are randomly cropped
to lengths of 2-4s. Then we group features which have the
same length into a mini-batch with batch-size = 128. All neural
networks are implemented by PyTorch [23]. The model is
optimized using stochastic gradient descent (SGD) [24] with
momentum of 0.95 and weight decay of 5e-4. Our model will
be trained for 192 epochs in total. The learning rate gradually
decreases from 1e-2 to 1e-5 in the whole training process.

The backbone of our network is ResNet-34 [25]. Based
on this network, Cai et al [26] proved that applying length

TABLE I
ARCHITECTURE OF RESNET-34 IN OUR EXPERIMENTS.

Layer Channels Blocks Down-sample Output-size
Conv1 16 - × 64×L
Stage1 16 3 × 64×L
Stage2 32 4 X 32×L

2

Stage3 64 6 X 16×L
4

Stage4 128 3 X 8×L
8

Statistics pooling 256
Embedding (FC) 128
Length normalization (L2-norm + scale) 128
Classifier (FC) speaker categories

normalization to deep embeddings could improve SV per-
formance. The implementation of length normalization is to
compute L2-norm of embeddings and then multiply a scale
parameter α. Hence we follow them that we also adopt length
normalization (α = 12 in all our experiments) to embeddings.
In addition, we apply statistics pooling [7] to transform
variable-length representations into the fixed-length vectors.
The statistics pooling layer receives the output of the final
convolutional layer and calculate mean and standard deviation
to be the statistics information. It then concatenates these
statistics and feed them into next embedding-extracting layer.
The detail of our model’s architecture is reported in Table I,
where L is variable-length data frames.

After model training finished, the 128-dimensional speaker
embeddings are extracted from an FC layer. At last, we com-
pute the similarity between embeddings using cosine distance
and PLDA.

C. Loss Function Configuration

Our triplet-center loss is trained combining with softmax
loss, where weight λ = 0.01, margin m = 5 and the learning
rate of center in triplet-center loss is 0.1. In order to compare
the advantage of our proposed method, We also conduct
experiments on triplet loss and center loss. In triplet loss
experiment, we first pretrain the model using softmax loss
and then finetune it by triplet loss. More specifically, we apply
hard mining strategy [20] to construct triplets, i.e., each mini-
batch (batch-size = 128) includes 32 speakers and each speaker
has 4 speech segments. In this case, each mini-batch could
construct 128 “hard triplets”. In center loss experiment, it is
very essential to combine center loss with softmax loss for
model training, the form of this combination is like Eq. (4)
where λ (i.e., the weight of center loss) is 0.01. The learning
rate of center in center loss is 0.1.

D. Ramp-up of Triplet-center Loss

Our experiments show that the ramp-up of the triplet-center
loss component could slightly improve the system perfor-
mance. Hence in all experiments, we ramp up the triplet-center
loss weight λ during the first 31 epochs using a Gaussian
ramp-up curve:

λ(t) = a ∗ e−5(1− t
T )2 (5)
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TABLE II
PERFORMANCE OF DIFFERENT LOSS FUNCTIONS BASED ON RESNET-34 (LOWER IS BETTER).

ID Loss function Length normalization Pooling Cosine distance PLDA backend
EER (%) minDCF0.01 EER (%) minDCF0.01

1 i-vector [26] - - 13.80 0.681 5.48 0.488
2 Center loss [11] × LDE 4.98 0.496 4.87 0.632
3 Center loss [11] × Average pooling 4.75 0.522 4.59 0.516
4 A-softmax loss [11] × LDE 4.56 0.441 4.48 0.576
5 A-softmax loss [11] × Average pooling 5.27 0.439 4.46 0.577
6 Softmax loss [11] × LDE 5.21 0.516 5.07 0.519
7 Softmax loss [11] × Average pooling 5.48 0.553 5.21 0.545
8 Softmax loss X Average pooling 5.18 0.452 4.71 0.512
9 Triplet-center loss X Average pooling 4.34 0.429 4.16 0.484
10 Softmax loss X Statistics pooling 4.83 0.449 4.42 0.463
11 Triplet loss X Statistics pooling 4.61 0.495 4.21 0.477
12 Center loss X Statistics pooling 4.52 0.436 4.30 0.454
13 Triplet-center loss X Statistics pooling 4.27 0.384 3.96 0.454

where t is epoch from 0 to 30, λ(t) is the value of λ in t-th
epoch. T = 30 is the maximum epoch during ramp-up period,
and a is the maximum value of λ.

IV. RESULTS

A. Main Results

The performance is evaluated in terms of equal error rate
(EER) and minimum of detection cost function (minDCF0.01).
The main results are reported in Table II. The i-vector sys-
tem is a baseline, where 2048-components Gaussian Mixture
Model-Universal Background Model (UBM-GMM) is trained,
and 400-dimensional i-vector is extracted.

The experiments of ID from 2 to 9 are comparison of our
triplet-center loss with other state-of-the-art loss functions,
where LDE is a novel pooling method proposed in [11].
Comparing result of ID 9 with ID 8, our triplet-center loss
achieves a notable progress over softmax loss. And comparing
result of ID 9 with other loss functions reported in [11],
triplet-center loss also keeps obvious advantage. On the other
hand, comparison between result of ID 8 and ID 7, we could
discover that length normalization is an effective operation in
our experiments, this is consistent with conclusion in [26].

Comparison between result of ID 8 and ID 10 shows
that statistics pooling is more effective than average pooling.
Hence, in order to obtain better performance and keep con-
sistency, we adopt statistics pooling and length normalization
in experiments from ID 10 to 13. In these 4 results, the
performances of EER in triplet loss are slightly improved over
softmax loss, but the performances of minDCF0.01 in triplet
loss are worse than those in softmax loss. The reason is that
we use the hard mining strategy to select triplets in each mini-
batch for triplet loss training, but it may not be a good enough
way to construct triplets in this experiment. It proves that
designing an appropriate mining strategy to fit the triplet loss is
very difficult. However, in the same configuration, the triplet-
center loss acquires better performance than triplet loss. Now,
look at center loss (ID 12), it gets improvement compared
with softmax loss. But due to no consideration of enlarging
the inter-class distance, the result is worse than that of triplet-
center loss. The comparison between these 4 results proves

that our triplet-center loss not only overcomes the limitations
of triplet loss and center loss, but also shares the superiorities
of these two loss functions. Thus it is reasonable that triplet-
center loss obtains the best performance in all our experiments.
Specifically, comparing result of ID 13 with ID 10, our triplet-
center loss reduces EER from softmax loss by 11.6%, 10.4%
in cosine scoring and PLDA backend, respectively.

B. Study on Parameter Influence

As shown in Eq. (3) and (4), both the margin m and the
weight λ have influence on performance. To investigate the
impact of these two hyper-parameters, we carry out more
experimental analysis in this section.

The analysis is presented in Fig. 2, where the baseline is
the result of softmax loss (ID 10 in Table II). Since EER and
minDCF0.01 curves have almost the same tendency, here we
only show EER curves. Extensive experiments indicate that the
best choices are m = 5 and λ = 0.01. Hence, when studying
on margin m in Fig. 2 (a), we fix λ to be 0.01, and when
studying on weight λ in Fig. 2 (b), we fix m to be 5.

In Fig. 2 (a), we could find when margin m = 1, the
result is close to the baseline, this is because m is so small
that triplet-center loss could not produce a marked effect.
The best result is m = 5, and as m increases from 5, the
performance becomes worse and worse, it illustrates that
too large value of m may lead to over-fitting. Now, look
at Fig. 2 (b), although the best performance appears at λ
= 0.01, it shows better results than baseline when λ is in
range from 0.001 to 0.05. One possible explanation is that
triplet-center loss and softmax loss work in different aspects,
namely, they are complementary. Triplet-center loss aims to
construct a metric learning space where deep embeddings
are not only discriminative between different classes but also
compact within the same class. However, achieving such a
perfect space to set all embeddings to appropriate position
is very difficult. In this case, softmax loss is employed to
find a decision boundary of different classes in a separable
label space. Once the model with softmax loss has converged,
the clear decision boundary could help triplet-center loss
further compact intra-class distance. Meanwhile, based on the
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(a) Performance in terms of margin m

(b) Performance in terms of weight λ (λ is logarithmic scale)

Fig. 2. Performances in terms of (a) varying m when λ is fixed to 0.01 and
(b) varying λ when m is fixed to 5.

appropriate configuration of hyper-parameters, triplet-center
loss will not damage the classification performance of softmax
loss. Thus good result can be achieved.

V. CONCLUSIONS

This paper applies an effective loss function, i.e., triplet-
center loss, to improve the performance of deep embedding
learning method for SV task. It learns a center for each
class and requires distances between samples and centers from
the same class are closer than those from different classes.
And it further introduces a margin to enforce a distance
between different classes, leading to more discriminative deep
embeddings. It not only overcomes the limitations of triplet
loss and center loss, but also shares the superiorities of these
two loss functions.

Extensive experiments are conducted on Voxceleb to eval-
uate the effectiveness of our proposed triplet-center loss. It
obtains significant performance gains when comparing with
baseline loss function. Specifically, our triplet-center loss
reduces EER from softmax loss by 11.6%, 10.4% in cosine
scoring and PLDA backend, respectively. In addition, further
experiments show that appropriate values of margin m and
weight λ are both crucial to system performance.
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