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Abstract—At present, the recognition of weather phenomena 
mainly depends on the weather sensors and the weather radar. 
However, large-scale deployment of meteorological observation 
equipment for intensive weather monitoring is difficult because it 
is expensive and difficult to maintain. Moreover, convolutional 
neural networks (CNNs) can also be used to identify weather 
phenomena, but existing methods require high computing power 
of equipment, making it difficult to deploy in practice. Therefore, 
designing a lightweight model that can be deployed in a small 
device with weak computing power is crucial for intensive 
weather monitoring. In this paper, we study the shortcomings of 
some existing lightweight models. By comparing the 
disadvantages of these models, a new lightweight model is 
proposed. In addition, considering the number of existing weather 
datasets are too small to meet real monitoring needs, so we 
produced a dataset with a more complex variety of weather 
phenomena. Through the experiments, the proposed method can 
save more than 25 times memory usage with only 1.55% accuracy 
lost compared with the best CNNs method which achieves state-
of-the-art performance among the other lightweight models.     

I. INTRODUCTION 

At present, in the field of meteorology, the identification of 
weather phenomena mainly relies on hardware device-based 
methods such as the weather sensors [1,2] and the weather 
radar [3,4]. However, due to the cost, these devices are difficult 
to deploy in large areas and are difficult to maintain. 

Convolutional neural networks (CNNs) have become 
ubiquitous for superhuman accuracy in challenging image 
recognition tasks [6]. However, there are two problems in 
applying convolutional neural network to weather 
identification:      1. Training a CNNs model requires a lot of 
data which is not easy to obtain. 2. Modern state-of-the-art 
networks tend to be deeper and more complicated to achieve 
higher accuracy which require high computational resources 
beyond the capabilities of small devices. 

This paper reviews some popular structures and proposes a 
series of lightweight models for weather identification that can 
be deployed in small devices to achieve intensive weather 
monitoring. Section 2 reviews prior research on identification 
of weather phenomena. Section 3 describes the details of our 
method. Section 4 presents extensive experiment to 
demonstrate the model’s performance. Section 5 contains 
conclusions and future work. 

II. RELATED WORK 

Due to the complexity and diversity of images, the 
identification of weather phenomena has always been a 
difficult problem in computer vision [5]. Some studies have 
tried such as atmospheric scattering model and region 
concurrent selection model, while others have extracted HOG, 
contrast and other features after image segmentation and 
combined them with machine learning to classify images [7,8]. 
However, these methods generally have high requirements for 
image preprocessing and are difficult to achieve end-to-end 
prediction. 

Ref. [9] used convolutional network in weather classification 
earlier. This paper proposed a simple eight-layer convolutional 
network to classify two weather conditions, namely cloudy day 
and sunny day, which can achieve high accuracy without 
preprocessing of images. Then using CNNs for weather 
identification became more and more popular [10,11,12,13]. 

While as the performance of neural network often improves 
with the increase of layers, which also means higher 
requirements on data volume. In order to train with small-scale 
data in a large network, transfer learning was introduced. This 
lead to improvements in accuracy, but such a large network is 
difficult to deploy. In addition, transfer learning limits the 
freedom of model design which means it's hard to combine 
modern state-of-the-art structures. 

Since CNNs’ high demand to computation power. Designing 
lightweight network has been an active research area in recent 
years. SqueezeNet [14] extensively uses 1x1 convolutions with 
squeeze and expand modules primarily focusing on reducing 
the number of parameters. MobileNetV1 [15],  MobileNetV2 
[16], MobileNetV3 [29], ShuffleNet [17] use depthwise 
separable convolutions [18] to decrease the computation cost. 
Also, pruning [19,20,21,22], quantization [23,24] and 
knowledge distillation [25,26] are important complementary 
effort to improve the network efficiency. 

Consider the need to deploy on hardware, we choose to 
design a lightweight network. Some current lightweight models 
sacrifice a lot of precision for efficiency [14,15,17] while 
others are designed for specific tasks and require a lot of 
computing equipment and time to train [29,32]. The proposed 
model focuses on both precision and efficiency. It is inspired 
by the above models and combines some of the most advanced 
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structures to achieve great improvements in accuracy and 
efficiency. 

III. METHOD DETAILS 

The proposed model is based on a lightweight building 
blocks. We will the model structure and details in this section. 

A. Building blocks 

Depthwise Separable Convolutions are key building blocks 
for many efficient neural architectures [15,16,17] and we use 
them in the present work as well. 

The difference between standard convolution and depthwise 
convolution can be seen in Fig.1. 

In standard convolution a feature map will convolution with 
each filter while in depthwise convolution each feature map 
only convolution with one filter. 

Network performance can be greatly improved by 
multiplexing image features [26,27]. To take advantage of this, 
we design our building blocks inspired by the inverted 
residuals structure in MobileNetV2 [16], which is shown in 
Fig.2. 
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Fig.1 Standard convolution and Depthwise convolution 

Conv 1x1

Depthwise 3x3

Depthwise 3x3

Conv 1x1
 

Fig.2 Building blocks 

B. Nonlinearities 

A better nonlinearity called swish was introduced [28] that 
when used as a drop-in replacement for ReLU. The 
nonlinearity is defined as: 											       	ݏ݅ݓݏℎ	ݔ = ݔ ∙  (1)                 (ݔ)ߪ

While sigmoid function spend too much computation cost, 
MobileNetV3 [29] replace sigmoid function with its piece-wise 
linear hard analog, the hard version of swish becomes: 											ℎݏ݅ݓݏℎ = ݔ)ܷܮܴ݁)ݔ + 3))/6           (2) 

Use (2) to replace the original swish function can save much 
computation cost. 

C. Squeeze and Excitation 

At present, convolution is carried out in 2D space. In essence, 
it only models the spatial information of images and does not 
model the information between channels. Ref. [30] proposed a 
Sequeeze and Excitation block to explicitly model the 
information between channels. The structure is shown in Fig.3. 

 
Fig.3 Squeeze and Exciation 

The feature map A through the network layers become 
feature B, feature B then through a Sequeeze and Excitation 
block. The Sequeeze structure doing global average pooling 
and get 1x1xC feature map which has a global receptive field. 
Then the excitation structure uses a fully connection network 
to take a nonlinear transformation on the new feature map.  
Finally, the scale block uses the Excitation results as weight, 
take to the input features. 

D. Model define 

With these structure, we redefine our building blocks in 
Fig.4. Each block has two 1x1 filters as pointwise convolution, 
two 3x3 filters to capture the feature maps as well as batchnorm 
and hswish after each convolution layer. The Squeeze and 
Excition block is at the bottom of the block. Also, if stride 
equals to one, there is a skip-connection structure. 

Our blocks use two fixed 3 by 3 filters instead of a 5 by 5 
filter. This is because two three-by-three filters obtain the same 
receptive field as five-by-five but with fewer parameters which 
can be calculated in (3): ܴܨ௟ାଵ = ௟ܨܴ + ௟ାଵ݁ݖ݅ݏ_ݎ݁݇) − 1) ∗  ௟  (3)݁݀݅ݎݐݏ_݁ݎݑݐ݂ܽ݁

RF stands for reception field, the subscript l is the number of 
layers, ker_size stands the size of kernel, feature_stride means 
the kernel stride. 

In addition, more convolution layers will bring better 
nonlinear properties to the model 

We define our model by stacking these blocks, also with a 
feature capture block in the top and a classification block in the 
bottom. Our model is shown in table I, we compare the 
performance with other model in experiment section. 

Input denotes the input feature map’s size. Operator denotes 
the function unit. Exp size denotes the expand size in building 
blocks. #out denotes the number of output channels. Stride 
denotes the step length of convolution. 

E. Scaling 

Scaling up the model is widely used to achieve better 
accuracy [26,31] while shrinking the model save more 
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computing resources. We define a width multiplier ɑ to scale 
the model. We show it in experiment section. 

Conv 1x1

BN and hswish

Depthwise 3x3

BN and hswish

Depthwise 3x3

BN and hswish

Conv 1x1

BN

SE Block
    

Fig.4 New Building blocks 
Table I. Specification for the proposed model 

Input Operator exp size #out stride 224ଶ ∗ 3 conv2d - 8 2 112ଶ ∗ 8 block 16 12 2 56ଶ ∗ 12 block 24 18 1 56ଶ ∗ 18 block 36 24 2 28ଶ ∗ 24 block 48 32 1 28ଶ ∗ 32 block 64 48 2 14ଶ ∗ 48 block 96 96 1 14ଶ ∗ 96 conv2d - 364 1 14ଶ ∗ 364 pool - - 1 1ଶ ∗ 364 fc - 6 1 

IV. EXPERIMENT 

we compared the performance between transfer learning and 
our method. In addition, some lightweight models are in the 
comparison range. Finally, we scaling the model to exploit the 
best performance. The dataset and code are at: 
https://github.com/guhuozhengling/lightweight-model-for-
weather. 
A. Datasets 

We made a dataset containing six weather phenomena 
including dew, frost, haze, rain, sand and snow, the number of 
picture is 12100, a simple demonstration is shown in Fig 5. Our 
access to images is through the Internet, physical photography 
and academic exchanges [5]. In addition to our own dataset, we 

conducted experiments on a publicly available dataset with 
four types of weather phenomena as we called it dataset-four. 
B. Experiment settings 

We split our dataset as training set, validing set and testing 
set by 3:1:1 with a fixed random seeds, this ensures that our 
experiments are run on the same data. We use data 
augmentation in training set to prevent overfitting. The testing  
set is only using once at last to evaluate the performance of 
model. 

 
Fig.5 The image demonstration 

We compare our model with some transfer learning model 
including Vgg16, Vgg19, Resnet152, Densenet201, 
Inception_V3 and some lightweight model including 
Squeezenet, Shufflenet, Efficientnet, MobilenetV1-V3. 
Evaluation criteria include accuracy and memory usage. 
C. Experiment results 

Table II. Comparison with transfer learning  
Model name Acc1 Acc2 Memory usage(MB) 
InceptionV3 
Resnet152 

Densenet201 
Vgg16 
Vgg19 

82.97 
92.98 
92.61 
89.45 
89.66 

90.95 
96.55 
95.26 
95.26 
93.07 

733.33 
829.00 
510.66 
735.52 
775.68 

Proposed model 91.43 96.55 32.97 
Performance gap -1.55 0.00 25.14 times 

Table III. Comparison with other lightweight models 
Model name Acc1 Acc2 Memory usage(MB) 
Squeezenet 
Shufflenet 

Efficientnet-0 
Efficientnet-1 
Efficientnet-2 
Efficientnet-3 

MobilenetV3-large 
MobilenetV3-small 

72.97 
89.53 
87.74 
87.00 
86.84 
87.08 
90.89 
90.47 

89.66 
95.19 
93.53 
90.95 
92.24 
93.97 
94.40 
93.53 

92.62 
60.71 
123.20 
175.33 
187.06 
250.01 
118.06 
40.35 

Proposed model 91.43 96.55 32.97 
Table II shows the performance between the proposed model 

and transfer learning in different models. Acc1 denotes the 
accuracy in our dataset and Acc2 denotes the accuracy in 
dataset-four. Performance gap denotes the performance gap 
between the best models in accuracy which is resnet152 in this 
table. Table III shows the performance between the proposed 
model and other lightweight models.  

Through the experiment, transfer learning with Resnet152 
achieves the best accuracy in both two datasets while it also 
takes up the most memory usage. The proposed model can save 
more than 25 times memory usage with only 1.55% accuracy 
lost. Compared to the rest of transfer learning model except 
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Densenet201, the proposed model demonstrates the advantages 
of both precision and efficient. 

Compared with other lightweight models, the proposed 
model also shows great performance. To our best knowledge, 
MobilenetV3 is the best lightweight models for Imagenet task. 
Our model design was greatly inspired by this while it is not 
suitable for training on small datasets. That can be seen by the   
enormous accuracy drop in the dataset-four which is smaller 
than our dataset. Nevertheless, the accuracy of the proposed 
model is better than that of the best transfer learning model. 

Fig.6 and Fig.7 visually illustrates the performance 
comparison between the two datasets. It can be seen that the 
proposed model in both two figures are located in the upper left 
corner of the figure, which indicates that the models built in 
this paper can maintain high classification accuracy and meet 
the original design intention while takes up less memory 
resources, thus reducing the demand for computing resources 
and facilitating deployment and application. 

 
Fig.6 Comparison in our dataset 

 
Fig.7 Comparison in dataset-four 

 
D. Scaling 

Sometimes we need to extend our model to other tasks or 
devices. Instead of re-designing the models, we can conduct the 
scaling of our models. In order to balance accuracy and 

efficiency, we scaling our model by a width multiplier ɑ to 
change the internal channels of model. 

Through our experiments, when ɑ is equal to 2.5 which 
means expanding the models by 2.5 times can reach a more 
precise result in the same task. Fig.8 shows the loss curve. If 
the computing power of the device allows, the accuracy can be 
improved by deploying a 2.5 times larger model. 

For different tasks and hardware limitations we can simply 
change the width multiplier ɑ converting to a new model, 
which is computationally friendly. 

Fig.8 Loss curve 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a lightweight model for weather 
classification and built a weather dataset. We have reviewed 
efficient structures and used them in our model. Through the 
experiment by our weather dataset. The proposed model can 
save 25 times memory usage comparing with the best transfer 
learning model with only 1.55% accuracy lost. Compared with 
other lightweight models, the proposed model achieves the 
optimal efficiency and accuracy. Also, our model performs 
equally well on other datasets. In addition, we have studied the 
scaling method that can easily expand the model to other tasks. 

We plan to work on how to combine our model with pruning 
to achieve a higher performance and use neural structural 
search to find the most appropriate parameter ɑ. 
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