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Abstract—We propose human-in-the-loop (HITL) speech-
design system with an interface. General text-to-speech (TTS)
systems generate the speech waveform from the input text without
the need for manual modification. In particular, end-to-end TTS
systems can synthesize speech as naturally as human speech.
However, it is difficult for users to modify the speech parameters
without degrading sound quality. The purpose of this study was to
enable collaboration between the user and a deep neural network
(DNN) to develop a system with which a user can control the
speech parameters without sound-quality degradation. The main
problem to be solved is to improve the quality of the speech-
parameters generated from the speech parameters designed by
the user. We developed several acoustic models with DNNs to
meet the purpose of this study. We carried out a subjective
evaluation to determine the effectiveness of the proposed system.
The subjective score regarding Muffledness improved by using
the proposed system compared with speech processed using a
TTS system that involves signal-processing without a DNN.

I. INTRODUCTION

Various methods, such as formant speech synthesis [1]
and concatenative speech synthesis [2], have been proposed
for text-to-speech (TTS) synthesis. In particular, statistical
parametric speech synthesis (SPSS) [3] has been widely used,
and a hidden Markov model (HMM) [4] has been used as the
fundamental technique for supporting such systems. Speech
synthesized with such systems is inferior to that uttered by
humans regarding sound quality. In 2013, an SPSS system
that using a DNN was proposed [5], and the sound quality
approached that of human speech.

These systems require a high-quality vocoder [6]. The
speech waveform is generated from the speech parameters
generated using an HMM or DNN. A recent study on SPSS
proposed a system called WaveNet [7], [8] that requires
no vocoder. This system enables a higher level of speech
synthesis than a conventional speech-synthesis system. End-
to-end systems, such as Tacotron [9], were then proposed and
are becoming mainstream.

The purpose of general SPSS studies is developing an
automatic speech synthesizer without the need for user ma-
nipulation. By inputting text, an SPSS system generates ideal
speech that requires no modification. However, the user would
want to manipulate the speech even if the system can output
speech similar to that produced by humans. For example, a

user often manipulates the speech parameters locally by post-
processing, which degrades the manipulated speech.

Degradation in manipulated speech has been addressed
in previous studies. Voice morphing [10], [11] and voice
conversion [12] have been proposed as techniques that include
speech-parameter manipulation. These studies have shown that
it is difficult to manipulate speech parameters without sound-
quality degradation. The main cause of such degradation
is the mismatch between pitch and timbre in the speech
parameters. A vocoder decomposes the speech waveform into
the fundamental frequency (fo), spectral envelope (Sp), and
aperiodicity (Ap). Manipulation of the fo should be carried
out with other parameters related to timbre.

The purpose of this study was to develop the human-in-the-
loop (HITL) speech-design system to prevent such degradation
by using a DNN to generate speech parameters from those
designed by the user. The novelty of this study is the collab-
oration between the user and DNN. In the proposed system,
the user can control the fo, and the DNN attempts to generate
other speech parameters without sound-quality degradation.
We call this system the human-in-the-loop (HITL) speech
design system that includes an interface we also developed. We
verified the effectiveness of the system through a subjective
evaluation.

In Section 2, we explain the concept of the proposed system
and discuss the interface of the proposed system in Section
3. In Section 4, we discuss the evaluation conditions and
the results. In Section 5, we clarify the effectiveness of the
acoustic models used in the evaluation. We conclude in Section
6 with a brief summary and mention future work.

II. CONCEPT OF PROPOSED SYSTEM

SPSS has been used to synthesize natural speech from
input text. In current state-of-the-art systems [7], [8], [9], it
is possible to generate the speech waveform as naturally as
the human speech. Since these systems require no vocoder, the
user cannot manipulate the speech parameters. Post-processing
after generating the speech waveform is generally required
to manipulate speech parameters, but sound quality degrades.
This is because there is no interaction between the fo and Sp.
In cases in which intonation is manipulated naturally, the Sp
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should also be manipulated along with the fo to enable this
interaction.

We attempted to solve this problem by constructing a neural
network to enable interaction between the fo and Sp. The
synthesis component of current TTS systems consist of two.
One part outputs the phoneme boundaries and the fo contour
from the text. The other part outputs other parameters from
the phoneme boundaries and fo contour. We adopted the
approach that outputs the acoustic parameters including the
fo contour again from the phoneme boundary and the fo
contour manipulated by the user. Sound-quality degradation
is expected when the fo contour is highly manipulated by the
user. In cases in which the manipulated fo contour slightly
changes, it is expected that the output with the timbre reflects
the interaction.

A problem in constructing such a neural network is with
an accent-dependent model. When outputting the phoneme
boundaries and fo contour from the text, an accent-dependent
model is indispensable. On the other hand, in the neu-
ral network with the accent-dependent model, sound-quality
degradation is expected because of the mismatch between the
manipulated fo contour and accent. We therefore trained the
neural network by adopting a non-accent-dependent model.

As mentioned above, we also developed an interface called
TalkingHead for the proposed system. Similar interfaces han-
dling speech design are VOCALOID [13] using diphone
speech synthesis [14] and v.morish [15] using real-time voice
morphing. The purpose of TalkingHead is to support the
collaboration between the user and DNN.

III. TALKINGHEAD: INTERFACE FOR HITL
SPEECH-DESIGN SYSTEM

We developed TalkingHead with TTS, speech-design, and
speech-waveform-generation functions from the designed pa-
rameters. Fig. 1 shows a snapshot of TalkingHead. The top
part of the figure represents the TTS component. The user can
input text into the text box. The text is first analyzed, then
the phoneme boundaries and fo contour are displayed at the
bottom.

The bottom part of the figure represents the phoneme-
duration/fo-contour-design component. This component has
two tabs: a tab for manipulating the phoneme duration and
one for manipulating the fo contour. The user can directly
describe the fo contour by using a mouse.

A. TTS component

In the TTS component, the user can synthesize speech from
a text and reproduce the synthesized speech waveform. When
the user enters a text in the text box then clicks the Synthesize
button, the speech waveform is synthesized. At the same time,
the phoneme duration and fo contour of the synthesized speech
are displayed in the phoneme-duration/fo-contour-design com-
ponent. By clicking the Play button, synthesized speech is
reproduced.

Fig. 1. Snapshot of TalkingHead

B. Phoneme-duration-design tab

In the phoneme-duration-design tab, the duration of each
phoneme and fo contour are displayed. The horizontal and
vertical axes represent the time and frequency, respectively.
The user can manipulate the phoneme duration by dragging
the cursor related to the start and end times of each phoneme
in the horizontal direction. When the Apply button is clicked,
the speech waveform is generated from the trained acoustic
model using the manipulated phoneme duration as the input.
The speech waveform reflecting the design can be confirmed
by clicking the Play button in the TTS component.

C. fo-design tab

In the fo-design tab, fo contour is displayed as well as the
phoneme duration. By dragging the displayed fo contour with
the mouse, the user can draw the fo contour. When the Apply
button is clicked, the speech waveform is generated from the
trained acoustic model using the drawn fo contour as the input.
The speech waveform reflecting the design can be confirmed
by clicking the Play button in the TTS component. By clicking
each tab, the user can switch between phoneme duration and
fo design.

IV. EVALUATION

We conducted an evaluation to ascertain the improvement
in sound quality of speech synthesis with the proposed system
for manually manipulated fo contour.

A. Acoustic models used in evaluation

1) Features used for training acoustic models: Fig. 2 illus-
trates the DNN-based acoustic models used in the evaluation.
We extracted linguistic features from labels in the speech
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database by using algorithms in Merlin [16], which converts
labels to its numerical representation in the text analysis. We
also removed accent-dependent linguistic features to address
mismatch by using the manually manipulated fo as one
of the input features. We used WORLD [17] as the high-
quality vocoder for speech-parameter extraction. Since it has
several estimators for each parameter, we used Harvest [18],
CheapTrick [19], [20], and D4C [21] to estimate the fo, Sp,
Ap, and voiced/unvoiced features, respectively. The frame shift
was set to 5 ms, and other parameters were set to their defaults.
The log fo was used instead of the linear fo. Then, Sp and Ap
were encoded into 60 mel-cepstrum and 5-band aperiodicity
(BAP), respectively. These values were determined by the
conventional result [22]. The delta and delta-delta features of
log fo, mel-cepstrum, and BAP were also used for training
the acoustic models.

2) Concepts of acoustic models: Fig. 2 also illustrates the
relationships between the input and output in each acoustic
model. Each model has different input and output features. In
Model A, non-accent-dependent linguistic features were used
as input features, and Sp and Ap were obtained as output
features. In Model B, non-accent-dependent linguistic features
and fo were used as input features, and Sp and Ap were
obtained as output features. In Model C, non-accent-dependent
linguistic features and fo were used as input features, and fo,
Sp, and Ap were obtained as output features. These acoustic
models were prepared to investigate the effective combinations
of features by determining which features positively affect the
sound quality.

Feed-forward neural networks that have twelve hidden
layers with 600 nodes in each layer were used. The tanh
activation function and Adam [23] optimization were also
used in the training. We used the Japanese speech corpus of
Saruwatari Lab, University of Tokyo (JSUT) [24], which has
7,696 utterances, as the training data.

3) Advantage of Model C: By using non-accent-dependent
linguistic features and fo, we assumed that we can model the
change in fo, which cannot be expressed with an accent. The
sound quality of Model C would be the best of all models
because it outputs a more appropriate fo contour. It is superior
to Models A and B, which does not use fo as input/output or
output features, respectively.

B. Speech synthesis used for each condition

Fig. 3 illustrates the speech-synthesis procedure in the
evaluation. Condition 1 involved the baseline speech stimuli
synthesized using DNN-based SPSS. The acoustic model
trained with this DNN used accent-dependent linguistic fea-
tures. Additionally, fo, Sp, and Ap were used for other con-
ditions. Similarly to the proposed system, feed-forward neural
networks that have twelve hidden layers with 1024 nodes
in each layer were used. The tanh activation function and
Adam [23] optimization were used in the training. Condition 2
involved speech stimuli that manipulated the intonation under
Condition 1. We then synthesized speech stimuli using the
manipulated fo and original Sp and Ap.
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Fig. 2. Acoustic models used in evaluation

Conditions 3, 4, and 5 were speech stimuli generated using
Models A, B, and C, respectively. Linguistic features used
for the input to the models were non-accent-dependent and
extracted from the label under Condition 2. Speech stimuli
generated under Conditions 3 and 4 were synthesized using the
manipulated fo and output parameters (Sp and Ap). Speech
stimuli generated under Condition 5 were synthesized using
output parameters (fo, Sp, and Ap). The difference between
the conditions was whether the manipulated fo was used.

C. Evaluation conditions

Table I lists the evaluation conditions. The evaluation was
carried out based on the comparison mean opinion score
(CMOS) defined by ITU-T recommendation P.800 Annex E
[25] . Twenty participants with normal hearing ability listened
to two speech stimuli and scored the second speech stimulus
compared with the first on a 7-point scale (Much Worse: −3
to Much Better: 3). The CMOS can generally be used to
evaluate the smaller sound-quality difference than the mean
opinion score (MOS). We used a sound-proof room with an
A-weighted sound pressure level (SPL) of 18 dB was used,
and a set of headphones (Sennheiser HD650).
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TABLE I
EVALUATION CONDITIONS

Evaluation protocol
Method Comparison mean opinion score evaluation

(CMOS)
Number of partici-
pants

20

Number of stimuli 50 (10 utterances per 5 conditions)
Evaluation items Naturalness, Muffledness, and Human-ness

Environment and equipment for reproduction
Environment Soundproof room
Background noise 18 dB (A-weighted SPL)
Headphones Sennheiser HD650
Audio I/O Roland QUAD-CAPTURE

Ten utterances not included in the training data were used
as texts of each speech stimulus from ATR503 [26], and the
total number of speech stimuli was 50. We manually designed
intonation by drawing the fo contour using TalkingHead, the
same as in the fo-design tab in Fig. 1. In Fig. 3, Condition
1 was the baseline and used as the reference in the CMOS
evaluation. Conditions 2 to 5 were used as the evaluation
targets. Evaluation items was determined to verify not only
the sound quality (Naturalness) but also the Muffledness that
is one of the problems in SPSS. Human-ness was also used to
confirmed whether synthesized speech was similar to the real
speech. The speech stimuli were randomized and reproduced
to the participants. To suppress the effect of intonation of the
manipulated fo on the evaluation, we instructed participants
to evaluate the stimulus regardless of the intonation.

D. Results

Fig. 4 shows the results. The vertical axis represents the
average scores under each condition. The error bar represents
the 95% confidence interval. We carried out a statistical
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Fig. 4. Results of CMOS evaluation

analysis on the results, which showed that the scores under all
conditions were superior to those from the baseline regarding
Naturalness and Human-ness. Condition 3 was superior to
Condition 2 regarding Muffledness and Human-ness. Con-
dition 4 was inferior to Condition 2 regarding Naturalness
and Human-ness. Additionally, the score of Muffledness in
Condition 5 was significantly greater than those of the others
(p < 0.001). The results indicate that our hypothesis stating
that Model C is the best was supported in the Muffledness.
The results from the other items, however, did not show the
effectiveness of Model C.

V. DISCUSSION

In this section, we discuss the effectiveness of the proposed
system based on the evaluation results. The scores under all
conditions were superior to those from the baseline regarding
Naturalness and Human-ness. Although we instructed the par-
ticipants regarding intonation in advance, it seems that these
two evaluation items were affected by intonation. Condition
3 was superior to Condition 2 regarding Muffledness and
Human-ness. The reason for this might be due to accent errors
between the label and speech of the training data used for the
acoustic model of the baseline. Japanese accents often change
under conditions such as region, era, and speaker. In Model A
used in Condition 3, there was no accent dependency in the
labels. Since there were no accent errors in the training data,
the score was considered high.

The score of Muffledness under Condition 5 was the highest
of all conditions. Model C used fo as both input and output, so
we analyzed the fo contour as the input and output of Model
C. Fig. 5 shows an example of the fo contour as the input and
output of Model C. The vertical axis represents the fo under
each condition. The fo contour was modified, but maintaining
the intonation of the fo was also observed.

By using fo as the input, interaction among acoustic features
that can not be expressed with accent was obtained. By
suppressing the smoothing of the acoustic features, the Muf-
fledness score can be improved. On the other hand, Condition
4 was inferior to Condition 2 in Naturalness and Human-ness.
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Fig. 5. Example of fo contour in Model C

Model B used under Condition 4 used fo as the input. These
results indicate that the proposed system is effective.

VI. CONCLUSION

We proposed the HITL speech-design system with an
interface we developed called TalkingHead. Compared with
conventional SPSS systems, we trained acoustic models for
speech design. To address sound-quality degradation by speech
design, we used non-accent-dependent linguistic features and
manipulated fo for the trained acoustic model. As a result, the
score of Muffledness significantly improved.

The next step of the study is to expand TalkingHead and
evaluate its usability. We implemented it with feed-forward
neural networks in this study, but it is a future task to
implement it with a DNN that has higher performance and
confirm the effect of different types of DNNs on the sound
quality in our system.
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