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Abstract—Traditional efforts for video coding usually focus on 

either rate-distortion (R-D) performance or quality smoothness 

(QS), which may not effectively achieve the desirable visual 

quality of experience for reconstructed videos. Single-objective 

optimization cannot guarantee the performance of the other one. 

In this paper, we would like to introduce a new perspective for 

the better joint consideration of video coding quality, where both 

R-D and QS are simultaneously evaluated, and then the 

traditional video coding optimization problem is converted from 

single objective to multiple objectives. We provide the details to 

demonstrate the establishment method of the joint video coding 

quality (JVCQ), which is given as the comprehensive analytical 

model to jointly considers spatial and temporal artifacts. The 

FixedQP results and consumed bits are referred to construct the 

comparable JVCQ results. Finally, by collecting JVCQ results 

for four different target bit rates and five different weighting 

strategies, we can obtain the rate-averaged JVCQ (RJVCQ), 

weighting-averaged JVCQ (WJVCQ) and rate-weighting-

averaged JVCQ (RWJVCQ), respectively. By comparing the 

different rate control (RC) algorithms, experiments validate the 

consistency and applicability of the proposed JVCQ with the 

original two separate evaluation metrics, and the proposed RC 

algorithms can have better performances. Besides the video 

coding quality evaluation, the group of JVCQs can be used to 

guide the optimization process of video coding to achieve gains 

on both evaluation metrics simultaneously.  

I. INTRODUCTION 

The developments of video coding standards, including 

H.264/AVC [1] and H.265/HEVC [2], are promoting the vast 

popularity of diversified video applications into our daily life. 

More and more video data are generating increased heavy 

overloads to the multimedia information systems [3]. 

Therefore, the reservation and delivery tasks for these huge 

videos still puzzle researchers and engineers on many sides. 

One significant problem is the enhancement of perceived 

visual experience with the given communication bandwidth 

constraint. Accompanied by the rapidly growing video 

applications, the vast optimization endeavors for video 

encoders will constantly play an indispensable role in 

improving the overall systematic performances for the 

multimedia information processing applications.  

For high efficiency video coding (H.265/HEVC) [4], lots of 

optimization efforts have been extensively carried out with 

goals of optimizing either rate-distortion (R-D) performance 

[5]-[9] or quality smoothness [10]-[11] by allocating coding 

bits and quantization parameters (QPs) in rate control (RC). 

Unified rate-quantization (URQ) model [5] and R-λ model [6] 

based RC algorithms were proposed to exploit coding 

efficiency, while other algorithms used statistical modeling 

and quality dependency [7], game theoretical bit allocation 

[8]-[9], machine learning based R-D model prediction [9] and 

coding parameter prediction [22], etc. Moreover, for the 

consistent quality oriented video coding optimization, the 

advanced models and reference distortions were employed 

[10]-[11]. These schemes all focused on the single objective 

optimization. However, the R-D performance and quality 

smoothness (QS) are both the key factors to determine the 

perceived quality in rate-constrained video coding.  

Single objective optimization was the mainstream manner 

in existing optimization endeavors. Nevertheless, for better 

visual quality optimization, a more comprehensive metric is 

desired urgently for coding quality evaluation. Traditionally, 

mean squared error (MSE) based peak signal noise ratio 

(PSNR) and structural similarity (SSIM) [8], [12] were 

adopted to measure signal and textural loss, although many 

researchers have devised various metrics for video quality 

assessment (VQA) [13]-[15] to better reflect the visual 

perception on distorted content. By introducing the data-

driven and machine learning strategies, VQA metrics are 

owning the increased computation overloads, which actually 

cannot been applied into the video encoder optimization. 

There are two major reasons. The first is that the developed 

quality metrics can not be widely recognized due to limited 

tested samples. The second is that the computation overloads 

were too unacceptable in many practical systems, and the 

achieved benefits were undeserving of large computation 

investment. Thus, the video coding standardization still uses 

PSNR, and the research community may sometimes use low 

complexity SSIM to conduct the optimization efforts. Thus, 

we can see that the quality evaluation metric with much lower 

computation complexity is favored in video coding.  

The rate-constrained coding quality evaluation is different 

from simple VQA procedure. We introduce use the simple 

calculation manner to evaluate and compare video coding 

quality, i.e. using PSNR and SSIM. Instead of the single 

objective optimization, we propose to adopt the multiple 

objective optimization. The new joint video coding quality 

(JVCQ) model is introduced to evaluate the video coding 

performance from the perspective of rate-constrained quality 

optimization. First, we can decompose the influential factors 

determining the human visual experience into two major 

factors, including the rate-constrained spatial quality, i.e. the 

R-D performance, and the temporal fluctuations. Second, we 

utilize the FixedQP results to make these two components 
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comparable and combined to generate a comprehensive model. 

Third, we introduce the mean JVCQ over different rates 

(RJVCQ), the mean JVCQ over different weighting strategies 

(WJVCQ), and the mean JVCQ over different bit rates and 

weighting strategies (RWJVCQ) to generate comprehensive 

evaluation results for different coding schemes for the fairness 

on different bandwidths and practical requirements.  

The remainder of this paper is organized as follows. In 

Section II, the motivations of evaluating spatial and temporal 

quality in video coding are discussed, including the rate-

constrained coding optimization frameworks. In Section III, 

the proposed JVCQ metrics are presented according to the 

perspective of multiple objective optimization. In Section IV, 

experiments are conducted to validate the consistency of the 

proposed JVCQ metrics for the different state-of-the-art RC 

algorithms. Finally, the conclusions are drawn in Section V.  

II. MOTIVATION 

To illustrate the motivation of the proposed JVCQ model 

for the joint considerations to evaluate video coding quality, 

in the following paragraphs we will discuss visual degradation 

effects from both spatial and temporal dimensions, and 

provide a novel multiple objective optimization perspective in 

the context of rate-constrained video coding optimization.  

A. Visual Degradation Effect from Spatial Distortion 

Irrespective of intra or inter frame and block level coding, 

the objectives of optimizing them are to reduce the signal loss 

during video encoding process, particularly in residual 

quantization after prediction and transformation [7]. Thus, the 

main goal of improving video coding is the elimination of 

average signal-level distortions which can be deemed as the 

average frame-level spatial coding distortions.  

In fact, many existing endeavors focused on reducing the 

average spatial distortions with rate constraint, which is 

known as rate-distortion optimization (RDO) [16]. Similarly, 

when the average spatial distortions are fixed, video coding 

optimization tries to minimize consumed bandwidth. RDO 

process is to minimize the following RD cost function J,  

RDJ +=  ,                                 (1) 

where λ is the Lagrange multiplier relating to the specific 

quantization parameter (QP) for each R-D pair. Hence, the 

formulation for minimizing average spatial distortions with 

rate constraints can be expressed as  
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where Ri and Di are consumed bits and distortion of the i-th 

coding frame or coding tree unit (CTU), i=1, 2, ..., N, and the 

total amount of bits should be less than the target RT.  

Undoubtedly, with a fixed rate constraint, less spatial 

coding distortions can bring better visual experience. We 

denote the visual degradation effect as VDE and the average 

spatial distortion as SD, while other factors that influence 

VDE are denoted as OF1, then 

( )11  , OFSDfVDE = ,                            (3) 

where f1 depicts the relationship between VDE and {SD, OF1}. 

Since average spatial quality is the major optimization goal, 

thus minimizing VDE is equivalent to minimizing SD,  
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where a list of frame-level QPs ({QPi, i=1, 2, ..., N}) are 

obtained with the criterion of optimizing the R-D objective.  

B. Visual Degradation Effect from Temporal Distortion 

Visual experience is influenced by not only average spatial 

distortions, but also temporal variations of distortions. Some 

researchers have made efforts [10]-[11] to obtain the frame-

level quality smoothness by optimizing the RC process. 

Therefore, it is widely recognized that the perceived visual 

experience can be significantly influenced by the variations of 

frame-level distortions, namely temporal distortions. The 

minimization of frame-level fluctuations with constraint of bit 

rates can be formulated as 

 
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ii
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 ..  , ...,  2, ,1 ,min ,            (5) 

where the total amount of frames is N, and F is to measure the 

fluctuations of frame-level quality, which can be defined as 

the standard variance of frame-level distortions.  

Similarly, we denote the temporal distortion as TD, while 

other factors that influence VDE are denoted as OF2, then  

( )22  , OFTDfVDE = ,                            (6) 

where f2 depicts the relationship between VDE and {TD, OF2}. 

Approximately, temporal smooth quality is the major 

optimization goal, therefore minimizing VDE is equivalent to 

minimizing TD,  
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where a list of frame-level QPs ({QPi, i=1, 2, ..., N}) are 

obtained with the criterion of optimizing the frame-level 

quality smoothness objective.  

C. From Rate-Constrained Spatial and Temporal Quality 

Analyses to Multi-Objective Optimization  

As aforementioned, we can see that with certain bandwidth 

constraint, the spatial and temporal quality can be improved 

separately by using optimization techniques. Nevertheless, the 

separate single objective optimization cannot guarantee that 

the two influential aspects can be enhanced together. In fact, 

almost all existing optimization efforts in video coding 

focused on either spatial quality or quality smoothness 

enhancements, and no works have noticed the importance of 

jointly optimizing both of them to achieve better visual 

experience. After taking both spatial and temporal factors, the 

formulation of VDE can be updated as  

( )33  , , OFTDSDfVDE = ,                          (8) 

where f3 depicts the relationship between VDE and {SD, TD, 

OF3}, OF3 means the set of other factors. Since SD and TD 

play the most key roles in evaluating visual experience, we 

can neglect the other implicit factors to have the clear and 

simple relationship modeling,  

( ) ( ) 10 ,1 , −+== WTDWSDWTDSDfVDE ,    (9) 
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where W is a tradeoff parameter between the spatial and 

temporal distortion evaluations, while the function f models 

the relationship between VDE and {SD, TD}. Hence, the 

traditional separate single objective optimization for R-D 

performance or quality smoothness can be reformulated as 

multiple objective optimization. Based on this formulation, 

the spatial and temporal quality can be jointly optimized.  

Therefore, the minimization of VDE is equivalent to the 

joint minimization of SD and TD by implementing the 

multiple objective optimization,  

 
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, 
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where a list of frame-level QPs ({QPi, i=1, 2, ..., N}) are 

obtained with the criterion of optimizing the joint rate-

constrained multiple objectives.  

III. PROPOSED JOINT VIDEO CODING QUALITY (JVCQ) 

EVALUATION METRIC 

A. Normalization  

Assume there are N frames, the collectable coding results 

after video encoding include frame-level bits {R1, R2, ..., RN} 

and generated distortions {D1, D2, ..., DN}, then from the 

average bits, frame rate and distortions, we can calculate the 

average R and D to get the R-D performance evaluation for a 

particular coding scheme. Because different target bit rates 

will cause different bits and distortions for RC algorithms, the 

JVCQ results should be normalized to be comparable. 

Therefore, we propose to use the rate and distortion results of 

FixedQP as normalizers to JCVQ results. By considering rate-

constrained video coding practice, the adopted strategy can 

make the optimization reasonable for visual experience 

enhancement and the obtained JVCQ evaluation results can be 

comparable among different coding schemes and target 

bandwidth conditions.  

First, we propose to use the following SQR to evaluate the 

spatial quality with consideration on consumed bit rates,  

T

F

T

F

R

R

D

D
SQR = ,                             (11) 
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where {RF, DF, QF} and {RT, DT, QT} are rate, distortion and 

quality of FixedQP and tested methods, respectively. The first 

items in (11) and (12) indicate the spatial quality evaluations, 

while the second items in (11) and (12) consider the rate-

constrained conditions to achieve the related quality. The 

distortions can be evaluated by MSE or NSSIM=1-SSIM, and 

quality can be evaluated by PSNR or SSIM. SQR definitions 

in (11) and (12) can be named as distortion based and quality 

based SQR, respectively.  

Second, for temporal quality, we use the standard variance 

of frame-level distortions or quality to evaluate the temporal 

influence on visual experience. For normalization, we can use 

the standard variance results of FixedQP which provides 

almost the smoothest coding results. The temporal quality is 

proposed to be measured by TQS,  
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where STV is the operator to obtain standard variance for a list 

of frame-level coding distortions and quality, DF,i and DT,i are 

coding distortions of the i-th frame by FixedQP and tested 

methods, respectively, while QF,i and QT,i are corresponding 

coding quality. (13) and (14) are distortion based and quality 

based TQS, respectively. Larger TQS indicates better quality 

smoothness.  

B. JVCQ Metric for Comprehensive Evaluation 

After defining SQR and TQS, we could propose the JVCQ 

metric to comprehensively evaluate the video coding quality 

by considering both spatial and temporal quality,  

( ) 10 ,-1 += WTQSWSQRWJVCQ ,         (15) 

where SQR and TQS are normalized by FixedQP results, 

respectively. For calculation procedures based on distortions 

and quality, we can obtain the distortion based and quality 

based JVCQ evaluations, respectively, where the two items 

should be aligned with same evaluation approach, i.e. either 

distortions or quality, for uniformity. For combination, it is 

important to make these two items comparable. Obviously, 

the coding schemes with higher JVCQ scores are preferred. 

When FixedQP is tested, JVCQ is equal to 1. 

Similar with BD-PSNR and BD-BR [17]-[18], four target 

bit rates {BR1, BR2, BR3, BR4} obtained by FixedQP testings 

with fixed frame-level QPs {22, 27, 32, 37} are tested to fully 

compare different coding schemes. The mean JVCQ over 

different bit rates (RJVCQ) can be calculated as 


=

=
I

i

BRi
JVCQ

I
RJVCQ

1

1 ,                         (16) 

where I can be 4 to indicate the number of tested target bit 

rates or fixed QPs, JVCQBRi is the JVCQ result with BRi and a 

fixed weighting strategy for SQR and TQS. Additionally, to 

comprehensively weight the importance of spatial and 

temporal quality in visual experience evaluations, parameter 

W can be tested with different configurations (0≤W≤1).  

For a fixed target BRi or QP, if different weighting 

strategies are applied, the same coding algorithm will also 

generate different JVCQ results, thus we propose to use the 

mean JVCQ over different weighting strategies (WJVCQ) to 

evaluate the robustness of different algorithms to differently 

weighted JVCQ metrics, and WJVCQ is calculated as 


=

=
J

j

W j
JVCQ

J
WJVCQ

1

1 ,                       (17) 

where J can be 5 to indicate the number of different weighting 

strategies. Typical values of W can be {0.00, 0.25, 0.50, 0.75, 

1.00}, which means: (1) all optimization efforts are put into 

temporal quality improvements; (2) spatial and temporal 

quality are jointly optimized with more efforts on temporal 

quality; (3) spatial and temporal quality are jointly optimized 

with equal efforts; (4) spatial and temporal quality are jointly 

optimized with more efforts on spatial quality; (5) all 
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optimization efforts are put into spatial quality improvements, 

respectively. 

It can be seen that RJVCQ and WJVCQ can cover different 

bandwidths and different weighting strategies for different 

requirements. Then, we can further propose the mean JVCQ 

over different rates and weighting strategies (RWJVCQ) 

which be expressed as the following equation,  


= =

=
I

i

J

j

WBR ji
JVCQ

JI
RWJVCQ

1 1

,

1 ,               (18) 

which can comprehensively compare different video coding 

schemes. Obviously, the JVCQ improvements can indicate 

the advantages of the tested coding scheme than the other. We 

advocate the use of the proposed RWJVCQ results for 

complete comparisons among different coding schemes with 

both different target bit rates and weighting strategies in 

diverse video content and application requirements. Similar 

with R-D curves, RJVCQ-W curves and WJVCQ-R curves 

can be easily plotted to compare different coding schemes.  

IV. EXPERIMENTAL RESULTS 

To demonstrate the consistency and applicability of the 

JVCQ model, we would like to conduct experiments to 

compare different RC schemes by using JVCQ analytics, and 

illustrate its usage in evaluating video coding quality.  

In [18], the latest HEVC reference software HM-16.19 

adopted the R-λ model based RC algorithm [6] which derived 

the λ for QP determination [19]-[20]. In [10], the adjacent 

reference frame-level distortions were used to set target 

distortions, and then QP was determined for consistent quality 

by using ρ-domain RC optimization [21]. In [11], similar with 

the R-λ model [6], the D-λ model was used for the consistent 

quality oriented QP determination. In [9], we have proposed 

the joint machine learning and game theory (MLGT) based 

RC optimization method for R-D optimization. In [22], we 

have proposed the learning-based initial QP (LIQP) method to 

also enhance the R-D performance. In this paper, we only test 

LIQP using MSE based RD optimum and present the NSSIM 

distortion and SSIM quality JVCQ results. Due to the 

monotonic relationship of optimal initial QP and target bit 

rates in [22], intra frame QP increment is beneficial to or give 

optimization priority to the relatively low bandwidth coding, 

while inter frame bit ratios were adjusted for smooth frame-

level quality. Therefore, to test the nature of the joint MLGT 

framework, in the experimental comparisons we remove these 

two additional parts. Therefore, the MLGT and LIQP methods 

gave the inter and intra frame RC optimization, respectively.  

These different coding schemes were tested on different 

previous versions of HM reference software, and may use 

different coding parameters and bandwidth constraints. In this 

paper, for fairness, we will implement all of them on the HM-

16.19 using the target bit rates generated by FixedQP using 

frame-level QPs {22, 27, 32, 37} to maintain the same test 

conditions. Since the relative performance differences (on the 

R-D performance and quality smoothness) of these schemes 

have been given in the previous works [18], [10]-[11], [9] and 

[22], for simplicity we will not list these coding results 

redundantly, and these results can be used as the reference for 

the JVCQ comparisons. The video coding schemes in [18], 

[10], [11], [9] and [22] are denoted as “HM-16.19”, “TIP13-

Seo”, “TIP16-Wang”, “TIP17-Gao” and “TBC19-Gao”, 

respectively. Additionally, the FixedQP method using fixed 

frame-level QPs is also tested to calculate JVCQ.  
 

 
 

Fig. 1. Comparisons of different types of JVCQ scores for different video 

coding algorithms 

 

From Table I and Fig. 1, the MSE-based RWJVCQ 

(MRWJ), NSSIM-based RWJVCQ (NRWJ), PSNR-based 

RWJVCQ (PRWJ), SSIM-based RWJVCQ (SRWJ), and the 

average RWJVCQ (ARWJ) are all listed and compared, 

where our proposed TIP17-Gao [9] and TBC19-Gao [22] 

methods can outperform the other methods significantly. 

These results are generally consistent with the tested results 

for R-D performance and quality smoothness in [9] and [22]. 

The intrinsic reason is that JVCQ only introduces the linear 

combination and weighting strategies for evaluations, which 

does not destroy the general consistency of performances.  

In Table II and III, the RJVCQ with different weighting 

strategies and the WJVCQ with different target bit rates are 

compared, respectively, from which we can also see that the 

MLGT and LIQP proposed methods can be better than the 

other methods. Fig. 2 provides the RJVCQ-W and WJVCQ-R 

curves where we can also find the advantages of the proposed 

schemes, as well as the consistency and applicability of the 

introduced JVCQ models in evaluating video coding quality.  
 

    
                               (a)                                             (b)  
Fig. 2. Comparisons of different video coding algorithms on: (a) RJVCQ-W 

and (b) WJVCQ-R curves 

 

By referring to the R-D performance and the quality 

smoothness results of the compared methods, we can see that 

RWJVCQ can consider both spatial and temporal influences 

on visual experience, and also consider both different bit rates 

and different weighting strategies required in practice. Thus, 

the introduced JVCQ models can be capable to provide the 

comprehensive comparisons. Another distinct feature is that 

the JVCQ models are easy to use and fast for computations, 
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which can benefit its wide adoptions. The two items in the 

JVCQ are originally not comparable, but after normalization, 

the scores become not monotonically related bit rates, which 

can be deemed as another contribution of this paper. Thus, it 

should be noted that the JVCQs are not used for video quality 

assessment, but mainly for the evaluations and comparisons 

of rate-constrained coding schemes, as well as for guiding the 

coding optimization process for the achievement of gains on 

R-D performance, quality smoothness and visual experience.  

 
Table I 

Comparisons of RWJVCQ scores for different video coding algorithms 
 

Class Sequence 
HM-16.19 TIP13-Seo TIP16-Wang TIP17-Gao TBC19-Gao 

MRWJ NRWJ PRWJ SRWJ ARWJ MRWJ NRWJ PRWJ SRWJ ARWJ MRWJ NRWJ PRWJ SRWJ ARWJ MRWJ NRWJ PRWJ SRWJ ARWJ MRWJ NRWJ PRWJ SRWJ ARWJ 

A 

PeopleOnStreet 0.4263 0.5964 0.5114 0.5492 0.5208 0.4123 0.6088 0.5115 0.5871 0.5299 0.1742 0.3281 0.4839 0.4931 0.3698 0.4728 0.6550 0.5185 0.5915 0.5595 0.5008 0.6300 0.5292 0.6083 0.5671 

Traffic 0.4233 0.5431 0.5222 0.5535 0.5105 0.4838 0.6024 0.5313 0.5791 0.5492 0.2699 0.3933 0.5019 0.5129 0.4195 0.4699 0.5858 0.5276 0.5756 0.5397 0.5414 0.6223 0.5689 0.6210 0.5884 

Average 0.4248 0.5697 0.5168 0.5513 0.5157 0.4480 0.6056 0.5214 0.5831 0.5396 0.2220 0.3607 0.4929 0.5030 0.3947 0.4713 0.6204 0.5231 0.5836 0.5496 0.5211 0.6261 0.5491 0.6146 0.5777 

B 

BasketballDrive 0.5756 0.5929 0.6525 0.6258 0.6117 0.4733 0.4995 0.6127 0.6001 0.5464 0.4996 0.4965 0.6742 0.6034 0.5684 0.6361 0.6549 0.6776 0.6762 0.6612 0.7185 0.7380 0.7416 0.7449 0.7357 

BQTerrace 0.6331 0.8314 0.6685 0.7754 0.7271 0.6160 0.8265 0.6675 0.7617 0.7179 0.4841 0.6559 0.6259 0.6503 0.6041 0.6421 0.8369 0.6705 0.7819 0.7329 0.6231 0.7788 0.7062 0.7817 0.7225 

Cactus 0.5156 0.5995 0.5659 0.5975 0.5696 0.5416 0.6558 0.5883 0.6632 0.6122 0.4360 0.5094 0.5455 0.5398 0.5077 0.5395 0.6255 0.5760 0.6217 0.5907 0.5844 0.6582 0.6151 0.6692 0.6317 

Kimono 0.6590 0.8878 0.7167 0.8836 0.7868 0.6717 0.8325 0.7116 0.8379 0.7634 0.5033 0.8186 0.6795 0.8555 0.7142 0.7188 0.8176 0.7397 0.8264 0.7756 0.8675 0.8723 0.8750 0.8848 0.8749 

ParkScene 0.5052 0.6710 0.5436 0.6402 0.5900 0.4839 0.6340 0.5325 0.6107 0.5653 0.4232 0.5387 0.5305 0.5616 0.5135 0.5299 0.6940 0.5490 0.6551 0.6070 0.5581 0.6917 0.5822 0.6939 0.6315 

Average 0.5777 0.7165 0.6294 0.7045 0.6570 0.5573 0.6897 0.6225 0.6947 0.6411 0.4692 0.6038 0.6111 0.6421 0.5816 0.6133 0.7258 0.6426 0.7123 0.6735 0.6703 0.7478 0.7040 0.7549 0.7193 

C 

BasketballDrill 0.5097 0.5285 0.5632 0.5498 0.5378 0.3881 0.4161 0.5227 0.5275 0.4636 0.4321 0.4428 0.5507 0.5266 0.4881 0.5277 0.5529 0.5649 0.5625 0.5520 0.5952 0.6379 0.6079 0.6364 0.6193 

BQMall 0.4938 0.6893 0.6303 0.6643 0.6194 0.4894 0.6965 0.6353 0.7003 0.6304 0.4631 0.6146 0.6264 0.6257 0.5824 0.5104 0.7155 0.6342 0.6876 0.6369 0.5482 0.7136 0.6591 0.7348 0.6639 

RaceHorsesC 0.5908 0.6480 0.6014 0.6145 0.6137 0.5213 0.5951 0.5990 0.6291 0.5861 0.4398 0.4750 0.5755 0.5434 0.5085 0.5968 0.6593 0.5996 0.6243 0.6200 0.5477 0.5936 0.5979 0.6233 0.5906 

PartyScene 0.6206 0.7144 0.6957 0.7669 0.6994 0.4922 0.5672 0.6507 0.6982 0.6021 0.4717 0.5270 0.6881 0.6604 0.5868 0.6222 0.7175 0.6937 0.7734 0.7017 0.6040 0.6781 0.7035 0.7454 0.6828 

Average 0.5537 0.6451 0.6226 0.6489 0.6176 0.4728 0.5687 0.6019 0.6388 0.5706 0.4517 0.5149 0.6102 0.5891 0.5414 0.5643 0.6613 0.6231 0.6619 0.6277 0.5738 0.6558 0.6421 0.6850 0.6392 

D 

BasketballPass 0.5898 0.6907 0.6468 0.6880 0.6538 0.3892 0.4569 0.6058 0.6016 0.5134 0.4285 0.4830 0.6269 0.5917 0.5325 0.5813 0.6815 0.6480 0.6875 0.6496 0.6143 0.7099 0.6710 0.7157 0.6777 

BlowingBubbles 0.4810 0.5512 0.5691 0.5547 0.5390 0.4377 0.5020 0.5694 0.5550 0.5160 0.4648 0.5194 0.5601 0.5477 0.5230 0.4786 0.5528 0.5671 0.5575 0.5390 0.4673 0.5232 0.5713 0.5692 0.5327 

BQSquare 0.5852 0.8725 0.5675 0.7111 0.6841 0.4419 0.7321 0.5355 0.6346 0.5860 0.5536 0.7873 0.5649 0.6750 0.6452 0.5816 0.8701 0.5676 0.7112 0.6826 0.5192 0.7538 0.5717 0.7491 0.6484 

RaceHorses 0.5817 0.7774 0.6311 0.7981 0.6971 0.4943 0.6587 0.6134 0.7584 0.6312 0.3130 0.3888 0.5820 0.5752 0.4647 0.5836 0.7819 0.6322 0.8058 0.7009 0.6167 0.7652 0.6627 0.8066 0.7128 

Average 0.5594 0.7230 0.6036 0.6880 0.6435 0.4408 0.5874 0.5810 0.6374 0.5617 0.4400 0.5446 0.5835 0.5974 0.5414 0.5563 0.7216 0.6037 0.6905 0.6430 0.5544 0.6880 0.6191 0.7101 0.6429 

E 

FourPeople 0.5864 0.7465 0.6081 0.7011 0.6605 0.5662 0.6729 0.5300 0.5988 0.5920 0.4741 0.5634 0.5761 0.5948 0.5521 0.5917 0.7459 0.6115 0.7056 0.6637 0.5165 0.5758 0.5925 0.5961 0.5702 

Johnny 0.6397 0.7472 0.6643 0.7390 0.6975 0.5286 0.6197 0.5150 0.5899 0.5633 0.4392 0.4819 0.5691 0.5684 0.5146 0.6521 0.7605 0.6788 0.7542 0.7114 0.5198 0.5501 0.5917 0.5930 0.5636 

KristenAndSara 0.5395 0.6780 0.5911 0.6501 0.6147 0.4052 0.5452 0.4586 0.5337 0.4857 0.4208 0.5016 0.5536 0.5620 0.5095 0.5473 0.6896 0.5936 0.6612 0.6229 0.5058 0.5680 0.5880 0.6089 0.5677 

Average 0.5885 0.7239 0.6211 0.6967 0.6576 0.5000 0.6126 0.5012 0.5741 0.5470 0.4447 0.5156 0.5663 0.5751 0.5254 0.5970 0.7320 0.6280 0.7070 0.6660 0.5140 0.5646 0.5907 0.5993 0.5672 

Total Average 0.5408 0.6756 0.5987 0.6579 0.6183 0.4838 0.6128 0.5656 0.6256 0.5720 0.4055 0.5079 0.5728 0.5813 0.5169 0.5604 0.6922 0.6041 0.6710 0.6319 0.5667 0.6565 0.6210 0.6728 0.6293 

 

Table II 

Comparisons of different types of RJVCQ scores with different weighting strategies for different video coding algorithms 
 

RJVCQ 
HM-16.19 TIP13-Seo TIP16-Wang TIP17-Gao TBC19-Gao 

W1 W2 W3 W4 W5 W1 W2 W3 W4 W5 W1 W2 W3 W4 W5 W1 W2 W3 W4 W5 W1 W2 W3 W4 W5 

MSE-based 0.1828 0.3618 0.5408 0.7199 0.8989 0.1069 0.2562 0.4055 0.5548 0.7042 0.1854 0.3346 0.4838 0.6330 0.7821 0.2043 0.3824 0.5604 0.7385 0.9166 0.2116 0.3892 0.5667 0.7443 0.9218 

NSSIM-based 0.3270 0.5013 0.6756 0.8499 1.0242 0.1812 0.3446 0.5079 0.6713 0.8346 0.3126 0.4627 0.6128 0.7629 0.9130 0.3554 0.5238 0.6922 0.8606 1.0290 0.3479 0.5022 0.6565 0.8107 0.9650 

PSNR-based 0.2093 0.4040 0.5987 0.7935 0.9882 0.1737 0.3732 0.5728 0.7724 0.9719 0.2015 0.3836 0.5656 0.7477 0.9297 0.2216 0.4128 0.6041 0.7954 0.9866 0.2465 0.4338 0.6210 0.8083 0.9955 

SSIM-based 0.3270 0.4925 0.6579 0.8233 0.9887 0.3126 0.4691 0.6256 0.7821 0.9387 0.1812 0.3813 0.5813 0.7814 0.9814 0.3554 0.5132 0.6710 0.8289 0.9867 0.3479 0.5104 0.6728 0.8352 0.9977 

Average 0.2615 0.4399 0.6183 0.7967 0.9750 0.1936 0.3608 0.5280 0.6952 0.8624 0.2202 0.3906 0.5609 0.7313 0.9016 0.2842 0.4581 0.6319 0.8059 0.9797 0.2885 0.4589 0.6293 0.7996 0.9700 

 

Table III  

Comparisons of different types of WJVCQ scores with different bit rates for different video coding algorithms 
 

WJVCQ 
HM-16.19 TIP13-Seo TIP16-Wang TIP17-Gao TBC19-Gao 

BR1 BR2 BR3 BR4 BR1 BR2 BR3 BR4 BR1 BR2 BR3 BR4 BR1 BR2 BR3 BR4 BR1 BR2 BR3 BR4 

MSE-based 0.5172 0.5076 0.5476 0.5910 0.3097 0.4504 0.5418 0.6333 0.3002 0.3646 0.4525 0.5048 0.5164 0.5417 0.5745 0.6091 0.5282 0.6379 0.6468 0.4541 

NSSIM-based 0.6603 0.6654 0.6863 0.6905 0.4710 0.6141 0.6563 0.7097 0.4116 0.4874 0.5564 0.5764 0.6642 0.6969 0.7066 0.7012 0.6120 0.7518 0.7443 0.5179 

PSNR-based 0.5514 0.5780 0.6188 0.6467 0.4576 0.5550 0.6047 0.6453 0.5205 0.5561 0.5958 0.6188 0.5508 0.5848 0.6268 0.6539 0.5682 0.6366 0.6738 0.6055 

SSIM-based 0.6404 0.6310 0.6659 0.6943 0.5324 0.6266 0.6490 0.6945 0.5355 0.5629 0.6069 0.6199 0.6457 0.6505 0.6826 0.7054 0.6401 0.7252 0.7224 0.6036 

Average 0.5923 0.5955 0.6297 0.6556 0.4427 0.5615 0.6130 0.6707 0.4420 0.4928 0.5529 0.5800 0.5943 0.6185 0.6476 0.6674 0.5871 0.6879 0.6968 0.5453 

 

V. CONCLUSION 

This paper has introduced a new strategy for the joint video 

coding quality (JVCQ) evaluation to comprehensively 

consider the spatial and temporal influences on visual 

experience, i.e. the R-D performance and quality smoothness 

in the rate-constrained scenario. First, we decompose the 

visual quality into spatial and temporal dimensions, and use 

the FixedQP based normalization method to formulate the 

multiple objective optimization framework. Second, by 

considering different conditions on target bit rates and 

weighting strategies, we introduce the RJVCQ, WJVCQ and 

RWJVCQ metrics for comprehensive comparisons. By 

adopting the simple linear combination and weighting 

strategies, JVCQ can exhibit the general consistency of 

performances, and the low complexity makes it easily 

applicable in practice. The two items in the JVCQ are 

originally not comparable, but after normalization, the scores 

become not monotonically related bit rates, which can be 

deemed as another contribution of this paper to make JVCQ 

comparable among different bit rates and weighting strategies. 

Experiments illustrate consistency and applicability of the 

JVCQ model in evaluating video coding quality. The key 

contribution can be attributed to the adoption of the new 

optimization perspective based on the multiple objectives in 

video coding, and the comprehensive evaluations over 

different bandwidth constraints and weighting preferences. 

Therefore, the introduced JVCQ is promising to be further 

improved by adaptively allocating weights according to the 
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practical encoding requirements and preferences, and to be 

used to guide the optimization process of video coding to 

achieve better coding quality and visual experience.  
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