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Abstract—Recent studies have shown that frame-level deep
speaker features can be derived from a deep neural network
with the training target set to discriminate speakers by a short
speech segment. By pooling the frame-level features, utterance-
level representations, called d-vectors, can be derived and used
in the automatic speaker verification (ASV) task. This simple
average pooling, however, is inherently sensitive to the phonetic
content of the utterance. An interesting idea borrowed from
machine translation is the attention-based mechanism, where the
contribution of an input word to the translation at a particular
time is weighted by an attention score. This score reflects the
relevance of the input word and the present translation. We can
use the same idea to align utterances with different phonetic
contents.

This paper proposes a phonetic-attention scoring approach
for d-vector systems. By this approach, an attention score is
computed for each frame pair. This score reflects the similarity
of the two frames in phonetic content, and is used to weigh the
contribution of this frame pair in the utterance-based scoring.
This new scoring approach emphasizes the frame pairs with sim-
ilar phonetic contents, which essentially provides a soft alignment
for utterances with any phonetic contents. Experimental results
show that compared with the naive average pooling, this phonetic-
attention scoring approach can deliver consistent performance
improvement in ASV tasks of both text-dependent and text-
independent.

I. INTRODUCTION

Automatic speaker verification (ASV) is an important bio-

metric authentication technology and has a broad range of

applications. The current ASV approach can be categorized

into two groups: the statistical model approach and the neural

model approach. The most famous statistical models for ASV

involve the Gaussian mixture model-universal background

model (GMM-UBM) [1], the joint factor analysis model [2]

and the i-vector model [3], [4], [5]. As for the neural

model approach, Ehsan et al. proposed the first successful

implementation [6], where frame-level speaker features were

extracted from a deep neural network (DNN), and utterance-

level speaker representations (‘d-vectors’) were derived by

averaging the frame-level features, i.e., average pooling. This

work was followed by a bunch of researchers [7], [8], [9],

[10].

The neural-based approach is essentially a feature learning

approach, i.e., learning frame-level speaker features from raw

speech. In previous work, we found that by this feature

learning, speakers can be discriminated by a speech segment

as short as 0.3 seconds [10], either a word or a cough [11].

However, with the conventional d-vector pipeline, this brilliant

frame-level discriminatory power cannot be fully utilized by

the utterance-level ASV, due to the simple average pooling.

This shortage was quickly identified by researchers, and hence

almost all the studies after Ehsan et al. [6] chose to learn

representations of segments rather than frames, the so-called

end-to-end approach [8], [12], [13], [14]. However, frame-

level feature learning possesses its own advantages in both

generalizability and ease of training [15], and meets our

long-term desire of deciphering speech signals [16]. An ideal

approach, therefore, is to keep the feature learning framework

but solve the problem caused by average pooling.

To understand the problem of average pooling, first notice

that feature pooling is equivalent to score pooling. To make

the presentation clear, we consider the simple inner product

score:

�su · �su′ =
1

|u|
∑
f∈u

�vf · 1

|u′|
∑
f ′∈u′

�vf ′ ,

where u and u′ are two utterances in test, f denotes frames;

�vf and �su are frame-level speaker features and utterance-level

d-vectors, respectively. A simple arrangement leads to:

�su · �su′ =
1

|u|
1

|u′|
∑
f∈u

∑
f ′∈u′

�vf · �vf ′ .

This formula indicates that with average pooling, the

utterance-level score �su · �su′ is the average of the frame-level

scores �vf · �vf ′ . Most importantly, the scores of all the frame

pairs (f, f ′) are equally weighted, which is obviously subopti-

mal, as the reliability of scores from different frame pairs may

be substantially different. In particular, a pair of frames in the

same phonetic context may result in a much more reliable

frame-level score compared to a pair in different phonetic

context, as demonstrated by the fact that text-dependent ASV

generally outperforms text-independent ASV. This indicates

that a key problem of the average pooling method is that

phonetic variation may cause serious performance degrada-

tion. This partly explains why d-vector systems are mostly

successful in text-dependent tasks.

A simple idea is to discriminate frame pairs in similar /

different phonetic contents, and put more emphasis on the

frame pairs in similar phones. This can be formulated by:

�su · �su′ =
1

|u|
1

|u′|
∑
f∈u

∑
f ′∈u′

α(f, f ′) · �vf · �vf ′ , (1)
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where α(f, f ′) represents the weight for the frame pair (f, f ′),
computed from the similarity of their phonetic contents. This

is essentially a soft-alignment approach that aligns two ut-

terances with respect to phonetic contents, where α(f, f ′)
represents the alignment degree of frames f and f ′, derived

from the phonetic information of the two frames.

The idea of soft-alignment was motivated by the attention
mechanism in neural machine translation (NMT) [17], where

the contribution of an input word to the translation at a

particular time is weighted by an attention score, and this

attention score reflects the relevance of the input word and

the present translation. We therefore name our new scoring

model by Eq. (1) as phonetic-attention scoring. By paying

more attention to frame pairs in similar phonetic contents,

this new scoring approach essentially turns a text-independent

task to a text-dependent task, hence partly solving the problem

caused by phone variation with the naive average pooling.

In the next section, we will briefly describe the attention

mechanism. The phonetic-attention scoring approach will be

presented in Section III, and the experiments will be reported

in Section V. The entire paper will be concluded in Section VI.

II. ATTENTION MECHANISM

The attention mechanism was firstly proposed by [17] in

the framework of sequence to sequence learning, and was

applied to NMT. Recently, this model has been widely used in

many sequential learning tasks, e.g., speech recognition [18].

In a nutshell, the attention approach looks up all the input

elements (e.g., words in a sentence or frames in an utterance)

at each decoding time, and computes an attention weight for

each element that reflects the relevance of that element with

the present decoding. Based on these attention weights, the

information of the input elements is collected and used to

guide decoding. As shown in Fig. 1, at decoding time t, the

attention weight αt,i is computed for each input element �xi

(more precisely, the annotation of �xi, denoted by �hi), formally

written as:

αt,i = σ(g(�zt−1,�hi))

where �zt−1 is the decoding status at time t, and g is a value
function that can be in any form. σ is a normalization function

(usually softmax) that ensures
∑

i αt,i = 1. The decoding for

�yt is then formally written as:

�yt = g′(�zt−1, �yt−1,
∑
i

αt,i
�hi),

where g′ is the decoding model. In the conventional setting, g
is a parametric function, e.g., a neural net, whose parameters

are jointly optimized with other parts of the model, e.g., the

decoding model g′.

III. PHONETIC-ATTENTION SCORING

We borrow the architecture shown in Fig. 1 to build

our phonetic-attention model in Eq. (1). Since our purpose

is to align two existing sequences rather than sequence to

zt-1

yt-1

zt

yt

h1

x1

h2

x2

hT-1

xT-1

hT

xT

,2t,1t , 1t T ,t T

Attention

Fig. 1. Attention mechanism in sequence to sequence model.

sequence generation, the structure can be largely simplified.

For example, the recurrent connection in both the input and

output sequence can be omitted. Secondly, in Fig. 1, the value

function g is learned from data; for our scoring model, we

have a clear goal to align utterances by phonetic content, so

we can design the value function by hand (although function

learning with prior may help). This leads to the phonetic-

attention model shown in Fig. 2.
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Fig. 2. Diagram of the phonetic-attention model.

The architecture and the associated scoring method can be

summarized into the following four steps:

(1) For both the enrollment and test utterances, compute the

frame-level speaker features from a speaker recognition DNN,

denoted by S = [�s1, �s2, ..., �sT ] and S′ = [�s′1, �s
′
2, ..., �s

′
T ′ ].

Additionally, compute the frame-level phonetic features from

a speech recognition DNN, denoted by P = [�p1, �p2, ..., �pT ]
and P ′ = [�p′1, �p

′
2, ..., �p

′
T ′ ].

(2) For each frame t in the test utterance, compute the attention

weight αt,i for each frame i in the enrollment utterance.

αt,i =
KL−1(p′t, pi)∑
i KL−1(p′t, pi)

,

where the KL−1(·, ·) denotes the reciprocal of KL distance.

This step is represented by the red dashed line in Fig. 2.

(3) Compute the matching score of frame t in the test utterance

as follows:
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dt =
∑
i

αt,i · cos(s′t, si).

This step is represented by the green solid line in Fig. 2.

(4) Compute the matching score of the two utterances by

averaging the frame-level matching score:

d =
1

T

∑
t

dt =
1

T

∑
t

∑
i

αt,i · cos(s′t, si).

IV. RELATED WORK

The attention mechanism has been studied by several au-

thors in ASV, e.g., [13], [19], [20], [21], [22], [23]. However,

most of the proposals used the attention mechanism to produce

a better frame pooling, while we use it to produce a better

utterance alignment. In essence, these methods learn which

frame should contribute to the speaker embedding, while our

approach learn which frame-pair should contribute to the

matching score. Moreover, most of these studies do not use

phonetic knowledge explicitly, except [13].

Another work relevant to ours is the segmental dynamic

time warping (SDTW) approach proposed by Mohamed et

al. [24]. This work holds the same idea as ours in aligning

frame-level speaker features, however their alignment is based

on local temporal continuity, while ours is based on global

phonetic contents.

V. EXPERIMENTS

A. Data

1) Training data: The data used to train the d-vector

systems is the CSLT-7500 database, which was collected by

CSLT@Tsinghua University. It consists of 7, 500 speakers and

1, 532, 766 utterances. The sampling rate is 16 kHz and the

precision is 16-bit. Data augmentation is applied to cover more

acoustic conditions, for which the MUSAN corpus [25] is used

to provide additive noise, and the room impulse responses

(RIRS) corpus [26] is used to generate reverberated samples.

2) Evaluation data: (a) CIIH: a dataset contains short

commands used in the intelligent home scenario. It contains

recordings of 10 short commands from 100 speakers, and

each command consists of 2∼5 Chinese characters. For each

speaker, every command is recorded 15 times, amounting to

150 utterances per speaker. This dataset is used to evaluate the

text-dependent (TD) task.

(b) DSDB: a dataset involving digital strings. It contains 1, 099
speakers, each speaking 15∼20 Chinese digital strings. Each

string contains 8 Chinese digits, and is about 2∼3 seconds.

For each speaker, 5 utterances are randomly sampled as

enrollment, and the rest are used for test. This dataset is used

to evaluate the text-prompted (TP) task.

(c) ALI-WILD: a dataset collected by the Ali crowdsource

platform. It covers unlimited real-world scenarios, and con-

tains 669 speakers and 27, 861 speech segments. We designed

two test conditions: a short-duration scenario Ali(S) where

the duration of the enrollment is 15 seconds and the test

is 3 seconds, and a long-duration scenario Ali(L) where the

duration of the enrollment is 30 seconds and the test is 15
seconds. This dataset is used to evaluate the text-independent

(TI) task.

B. Settings

The DNN model to produce frame-level speaker features

is a 9-layer time-delay neural network (TDNN), where the

slicing parameters are {t-2, t-1, t, t+1, t+2}, {t-2, t+2}, {t},

{t-1, t+1}, {t}, {t-2, t+2}, {t}, {t-4, t+4}, {t}. Except the

last hidden layer that involves 400 neurons, the size of all

other layers is 1, 000. Once the DNN has been fully trained,

400-dimensional deep speaker features were extracted from

the last hidden layer. The model was trained using the Kaldi

toolkit [27]. Based on this model, we built a standard d-vector

system with the naive average pooling, denoted by Baseline.

The phonetic-attention model requires frame-level phonetic

features. We built a DNN-HMM hybrid system using Kaldi

following the WSJ S5 recipe. The training used 500 hours of

Chinese speech data. The model is a TDNN, and each layer

contains 512 nodes. The output layer contains 463 units, cor-

responding to the number of GMM senones. Once the model

was trained, 463-dimensional phone posteriors were derived

from the output layer and were used as phonetic features.

The phonetic-attention system based on the phone posteriors

is denoted by Att-Post. Another type of phonetic features can

be derived from the final affine layer. To compress the size of

the feature vector, the Singular Value Decomposition (SVD)

was applied to decompose the final affine matrix into two

low-rank matrices, where the rank was set to 100. The 100-

dimensional activations were read from the low-rank layer of

the decomposed matrix, which we call bottleneck features. The

phonetic-attention system based on the bottleneck features is

denoted by Att-BN.

Finally, we built a phone-blind attention system where the

attention weight is computed from the speaker feature itself,

rather than phonetic features. This approach is similar to the

work in [19], [20], though the attention function is not trained.

This system is denoted by Att-Spk.

C. Results

The results in terms of the equal error rate (EER) are shown

in Table I, where the baseline system is based on the naive

average pooling, while the three attention-based systems use

attention models based on different features. For each system,

it reports results with two frame-level metrics: cosine distance

and cosine distance after LDA. The LDA model was trained

on CSLT-7500, and the dimensionality of its projection space

was set to 150. There are four tasks in total: the TD task

on CIIH, the TP task on DSDB, the TI short-duration task

on Ali(S), and the TI long-duration task on Ali(L). The best

performance is marked in bold face.

From these results, it can be seen that on all these tasks,

the attention-based systems outperform the baseline system,

indicating that the naive average pooling is indeed problematic.

When comparing these three attention-based systems, we find

they perform quite different on different tasks. On the TD task
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CIIH and TP task DSDB, the phone-blind attention system

Att-Spk seems slightly superior, while on the TI task Ali(S)

and Ali(L), the two phonetic-attention systems are clearly

better. This observation is understandable, as on the TD or

the TP tasks, the phonetic variation in enrollment and test

utterances are largely identical, so the appropriate alignment

can be easily found by even a phone-blind attention. On the TI

tasks, however, the phonetic variation is much more complex,

for which additional phonetic information is required to align

the enrollment and test utterances. Finally, comparing the two

phonetic-attention systems, the Att-BN is consistently better.

This indicates that the bottleneck feature is a more compact

representation for the phonetic content.

TABLE I
PERFORMANCE OF DIFFERENT SYSTEMS ON DIFFERENT TASKS.

Systems Metric EER(%)
CIIH DSDB Ali(S) Ali(L)

Baseline Cosine 3.71 1.02 9.24 4.95
LDA 2.49 0.70 5.84 2.44

Att-Spk Cosine 3.27 0.95 9.07 4.95
LDA 2.11 0.65 5.80 2.50

Att-Post Cosine 3.28 0.97 9.12 4.85
LDA 2.22 0.69 5.76 2.32

Att-BN Cosine 3.20 0.98 9.11 4.84
LDA 2.18 0.70 5.69 2.31

D. Analysis

To better understand the difference behavior of the phone-

blind attention and the phonetic attention, we draw the align-

ment produced by them on two samples from the TD and

TI tasks respectively. The figures are shown in Fig. 3 and

Fig. 4.1 It can be seen that on the TD task, two attention

approaches produce similar alignments, while the alignment

produced by phonetic attention is more concentrated. This is

not surprising, as the phonetic features are short-term and

change more quickly than the speaker features. Actually,

this might be a key problem of the present implementation

of the phonetic attention, as the concentration means less

frames in one utterance being aligned for each frame in the

other utterance, leading to unreliable scores. Nevertheless,

the explicit phonetic information does provide much more

accurate alignments in the TI scenario, where the phonetic

variation is complex and phone-blind attention may produce

rather poor alignments. This can be seen from Fig. 4 that

the aligned segments produced by the phonetic attention show

clear slopped patterns, which is more realistic than the flat

patterns produced by the phone-blind attention.

VI. CONCLUSIONS

This paper proposed a phonetic-attention scoring approach

for the d-vector speaker recognition system. This approach

uses frame-level phonetic information to produce a soft align-

ment between the enrollment and test utterances, and computes

the matching score by emphasizing the aligned frame pairs.

1The observations of the TD and TP tasks are quite similar, so here the
figure on the TP task is omitted.

Fig. 3. Alignment produced by the phone-blind and phonetic attentions on the
TD task.

Fig. 4. Alignment produced by the phone-blind and phonetic attentions on the
TI task.

We tested the method on text-dependent, text-prompted and

text-independent tasks, and found that it delivered consistent

performance improvement over the baseline system. The pho-

netic attention was also compared with a naive phone-blind

attention, and the results showed that the phone-blind attention

worked well in text-dependent and text-prompt tasks, but failed

in text-independent tasks. Analysis was conducted to explain

the observation. In the further work, we will study speaker

features that change more slowly. e.g., vowel-only feature. It

is also interesting to learn the value function.
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