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Abstract—Speech enhancement generative adversarial network
(SEGAN) is an end-to-end deep learning architecture, which only
uses the clean speech as the training targets. However, when the
signal-to-noise ratio (SNR) is very low, predicting clean speech
signals could be very difficult as the speech is dominated by
the noise. In order to address this problem, in this paper, we
propose a gated convolutional neural network (CNN) SEGAN
(GSEGAN) with noise prior knowledge learning to address this
problem. The proposed model not only estimates the clean speech,
but also learns the noise prior knowledge to assist the speech
enhancement. In addition, gated CNN has an excellent potential
for capturing long-term temporal dependencies than regular
CNN. Motivated by this, we use a gated CNN architecture to
acquire more detailed information at waveform level instead of
regular CNN. We evaluate the proposed method GSEGAN on
Voice Bank corpus. Experimental results show that the proposed
method GSEGAN outperforms the SEGAN baseline, with a
relative improvement of 0.7%, 28.2% and 43.9% for perceptual
evaluation of speech quality (PESQ), overall Signal-to-Noise
Ratio (SNRovl) and Segmental Signal-to-Noise Ratio (SNRseg),
respectively.

I. INTRODUCTION

The goal of speech enhancement is to remove the noise from
an observed signal recorded in noisy environment. It has been
widely used in many applications, such as automatic speech
recognition (ASR) [1], speech coding [2] and hearing aids [3].

In the past, various speech enhancement methods have been
developed [4], [5], [6], [7], [8]. Notable examples include
spectral subtraction [4], Wiener filtering [S] and nonnegative
matrix factorization (NMF) [6]. In recent years, deep learning
has achieved state-of-the-art performance in many applica-
tions. Motivated by the success of deep learning, researchers
have developed many deep learning techniques for speech
enhancement, such as deep denoising auto-encoders [7], deep
neural networks (DNNs) [8], and convolutional neural net-
works (CNNs) [9]. These DNN-based speech enhancement
models learn a mapping between noisy input features and
the desired target signals. However, when the signal-to-noise
ratio (SNR) is very low, predicting clean speech features could
be very difficult as the speech is dominated by the noise. In
order to address this issue, Odelowo et al. [10] propose a noise
prediction method for speech enhancement. They use the noise
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as their target features instead of clean speech. However, they
only predict the noise signals and don’t make full use of the
clean speech, which may lead to speech distortion.

In convolutional neural networks (CNNs), when the re-
ceptive fields are expanded, contextual information can be
augmented. In order to achieve this goal, there are two main
methods. One way is to increase the network depth, which
decreases computational efficiency and typically results in
vanishing gradients [11]. Another way is to enlarge the kernel
size, but it will raise computational burden and training time.
Recent works [12], [11], [13] have shown that CNNs with
gating mechanisms have an excellent potential for capturing
long-term temporal dependencies. Li et al. [12] apply the gated
CNN for speech separation and the performance is improved.
Tan et al. [11] use the gated CNN for speech enhancement
and get a good performance. However, they only enhance
the magnitude spectrum of complex-valued short time Fourier
transform (STFT) coefficients, leaving the phase spectrum
unchanged. Recent studies [14], [15] show that the perceptual
quality of estimated signals can be improved by enhancing the
phase spectrum.

In order to make full use of the raw data, Pascual et al.
[16] do speech enhancement based on raw waveform directly
via generative adversarial network (GAN). Their generator
network is structured similarly to an auto-encoder via CNN.
But they only enhance the target signals, the noise information
is not utilized. In this paper, motivated by the success of gated
CNN [11], [12], [13] and speech enhancement GAN (SEGAN)
[16], we propose a gated convolutional GAN method with
noise prior knowledge for speech enhancement, named as
GSEGAN. Because the gated CNN has advantages in captur-
ing long-term dependencies in sequential data, all the network
architectures of the proposed system are built with gated CNN
rather than the regular CNN. In addition, many traditional
methods usually use noise estimation for speech enhancement,
for example Wiener filtering [5]. However, DNN-based meth-
ods pay insufficient attention to this. When the SNR is very
low, predicting clean speech can be very difficult as the noise
dominates the speech signals. To address this problem, our
proposed method not only estimates the clean signals from
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noisy speech, but also makes full use of background-noise.
Noise signals are learned from noisy input and the enhanced
speech. Then the noise prior knowledge is used to instruct
the noise signals learning and assist the speech enhancement.
In this way, the knowledge of estimated noise can be used
by enhanced signals to improve the performance of speech
enhancement.

The rest of this paper is organized as follows. In section
2, speech enhancement generative adversarial network is pre-
sented. The proposed method for speech enhancement is stated
in section 3. Section 4 shows detailed experiments and results.
Section 5 draws conclusions.

II. SPEECH ENHANCEMENT GENERATIVE ADVERSARIAL
NETWORK

GAN is firstly introduced by Goodfellow et al. in [17],
which consists of a generator G and a discriminator D. The
generator G maps a noise vector z, from some known prior
distribution p,(z), to fake samples G(z). The main task of
discriminator D is to recognize whether its input is from
training data (real) or G (fake). G and D are pitted against
each other in an adversarial framework.

Speech enhancement generative adversarial network
(SEGAN) [16] applies the GAN to speech enhancement.
Generator (G) network is structured similarly to an auto-
encoder via CNN. The G network performs the enhancement.
They employ the least-squares GAN (LSGAN) [18] to their
speech enhancement system. The G loss is defined as follow:

1
in J(G) = -E[(D(G
min J(G) = SE[(D(G(x,
where z denotes the noise sample from normal distribution
A(0,I). x and y are noisy input and the target speech,

respectively.

z)) = 1)’ + M|G(x.2) - yll. (D)

III. THE PROPOSED SPEECH ENHANCEMENT SYSTEM

The main task of speech enhancement is to obtain the
enhanced signals y from the noisy input signals x. In this
paper, we propose to do so with a gated CNN based speech en-
hancement GAN (GSEGAN) system. Moreover, the proposed
system not only estimates the clean signals from noisy speech,
but also makes full use of background-noise to improve the
performance of speech enhancement. In other words, the noise
prior knowledge is learned to help to obtain better enhanced
signals. The gated CNN has an excellent potential for captur-
ing long-term temporal dependencies so that it can deal with
the raw waveform better than regular CNN. Motivated by the
recent success achieved by gated CNN in speech enhancement
[11], [12], in this paper, we propose to use gated CNN for all
the convolutional network architectures.

A. Gated CNN

Gating mechanisms potentially facilitate modeling more
complex interactions by controlling the information flow [11],
which is shown in the Figure 1. The proposed methods use
the following gated activation unit:
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Fig. 1. The architecture of gated CNN.

H; = ReLU(H;_1 * I/Vlf + blf) Qo(H_1x W +b7) (2)

where H;_; and H; denote the output of the (I-1)-th and [-
th layer. I/Vlf , WY, b'lf and b] represent kernels and biases
of the [-th layer. ReLU, o, * and ® are ReLU activation,
sigmoid activation, convolution operation and the element-
wise multiplication, respectively.

B. Network architectures

In this study, we propose to enhance the noisy speech by
the deep adversarial training method, named GSEGAN. The
model consists of a generator (G) and a discriminator (D).
The G network performs the enhancement, which is shown in
the Figure 2. It transforms the noisy speech into the enhanced
signals. The main task of discriminator D is to distinguish
between the enhanced signals and clean ones.

The G network is an encoder-decoder, adapted from [16]. It
consists of symmetric encoding layers and decoding layers. In
the encoder stage, the input noisy x is a linearly mixed single.

X=y+n 3)

where y and n are clean signal and the noise, respectively.
Then x is protected and compressed through a number of
strided convolutional layers.

c= fe(x) “4)

where vector ¢ is a condensed representation, f,(*) is a
mapping function from the input features to the vector c.

In the decoding stage, the encoding process is reversed by
means of fractional strided transposed convolutions (some-
times called deconvolutions).

Y= filc z) 5)

where y is the enhanced signal, fy(*) is a mapping function
of the decoder. z denotes a latent vector, which is the noise
sample from normal distribution .4°(0, I).

Skip connections are also used in the G network, which
connect each encoding layer to its corresponding homologous
decoding layer. The convolutional feature maps are passed to
and summed with the deconvolutional feature maps element-
wise, and passed to the next layer (Figure 2). If we force all
the information to flow through the compression bottleneck,
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Noise Prior
Knowledge

Noisy waveform

Fig. 2. The architecture of the proposed adversarial training method. ¢ is a
condensed representation after the encoder stage. z denotes a latent vector,
which is the noise sample from normal distribution .4"(0,I).

many low level details could be lost, but with skip connections
the speech waveform can be reconstructed properly. Moreover,
skip connections can offer a better training behavior, as the
gradients can flow deeper through the whole structure without
suffering much vanishing [19].

C. Noise prior knowledge learning

When the noise dominates the speech signals, predicting
clean speech can be very difficult. Therefore, only using the
clean speech as the training targets may be insufficient for
speech enhancement. In order to improve the performance of
speech enhancement, we use the noise prior knowledge to
instruct the learning of noise and assist the predicting of target
signals.

Because the proposed method operates the speech enhance-
ment in the time domain, so the noise signal n can be estimated
by the input noisy speech x and the enhanced speech y, which
is motivated by [20]:

n=x-y (©6)
where n is the estimated noise. Then the noise prior knowledge
is used to adjust the estimated noise.
D. Loss function

In order to improve the performance of speech enhance-
ment, the noise prior knowledge is used as a regularization at
the loss function, which is shown as following:

Jn=|n—n; )

To measure the distance between the enhanced speech and the
clean examples, we choose the L; norm, because it has been
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proven to be effective in the image manipulation domain [21],
[22]. Therefore, the loss function in Eq.1 becomes:
1
inJ(G) = E[(D(G(x,2)) — 1)?
min J(G) = SE[(D(G(x,2)) — 1)°] ®)
+ Ay =yl +adn].

where A\ and « are the weight of L, regularization and noise
estimation, y is the target signals. When v = 0, it means that
it does not use the noise prior knowledge and the loss function
of G is the same as SEGAN [16].

IV. EXPERIMENTS AND RESULTS

A. Dataset

In order to compare with the SEGAN [16], we chose the
same dataset Voice Bank corpus [23]. The database is open
and available'. We select 30 speakers from this database for
our experiments. The sampling rate is 16kHz.

As for the training set, a noise database is used [24], which
includes 40 different conditions and 10 types of noises. In
each condition, every speaker has about 10 different sentences
mixed with the noise at 4 signal-to-noise ratio (SNR) (0, 5, 10
and 15 dB). The test set includes 20 different conditions and 5
types of noise with 4 SNR each (2.5, 7.5, 12.5 and 17.5 dB).
For each test speaker, there are around 20 different sentences
in each condition. Note that all test utterances are excluded
from the training set, using different speakers and conditions.

B. Experimental setup

During training, we extract chunks of waveforms with a
sliding window and the chunks are approximately one second
of speech (16384 samples) with 50% overlap.

In the gated CNN, the ReLU and sigmoid layers have
the same settings. In (in-Channel, out-Channel) format, the
encoder stage in G network has (1, 16), (16, 32), (32, 32),
(32, 64), (64, 64), (64, 128), (128, 128), (128, 256), (256,
256), (256, 512), (512, 1024) convolution layers with 31 x 1
kernels and 2 x 1 strides. The input size is 16384 x 1. As for
the decoder stage of G, it is a mirroring of the encoder with
the same settings.

The D is a convoluntional classification network, which
follows the same convolutional structure of G’s encoder stage.
However, there are 3 differences. First, the input size is
16384 x 2. Second, it uses LeakyReLLU [25] non-linearities
with a = 0.3. Finally, a flatten layer is added at the last,
which reduces the amount of parameters required for the final
classification neuron.

In all the experiments, the epoch is set to 86, batch size is
100 and learning rate is 0.0002. Our models are optimized with
RMSprop algorithm [26] and implemented using Tensorflow
deep learning framework. The A weight of L; regularization
is 100, which is same as SEGAN [16].

Thttp://dx.doi.org/10.7488/ds/1356
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TABLE 1
THE RESULTS OF PESQ, SNROVL AND SNRSEG FOR DIFFERENT SPEECH
ENHANCEMENT METHODS. « IS THE WEIGHT OF THE NOISE PRIOR
KNOWLEDGE. THE VALUES OF THOSE METRICS ARE THE HIGHER THE
BETTER.

Method | o | PESQ | SNRovl | SNRseg
Noisy | - | 1970 | 8446 | 1680
SEGAN 1 | 2260 | 13775 | 6210

(baseline)

SEGAN 0.1 2.319 13.095 4.126
+noise prior | 0.5 2.275 15.922 7.680
knowledge 0.8 2.217 16.563 8.090
(proposed) 1.0 2.224 14.813 6.558
0 2.205 15.447 6.737
GSEGAN 0.1 2.219 15.411 7.304
(proposed) 0.5 2.226 17.165 8.611
0.8 2.191 16.894 8.404
1.0 2.284 17.656 8.935

C. Evaluation metric

In this work, in order to evaluate the quality of the enhanced
speech, we compute the following objective measures (the
higher the better). The perceptual evaluation of speech quality
(PESQ) [27] measures. The overall Signal-to-Noise Ratio
(SNRovl) and Segmental Signal-to-Noise Ratio (SNRseg) [28]
are from 0 to oo.

D. Results

Table I shows the results of these metrics. To have a
comparative reference, it also shows the results of those
metrics when applied directly to the noisy signals. We re-
implement SEGAN [16] with our experiment setup and it is
used as our baseline. It is corresponding to the SEGAN method
and a=0 in Table I.

1) The effect of noise prior knowledge learning: Notice
that, =0 means that methods only predict the clean speech but
with no noise prior knowledge. From the Table I we can find
that the performance of the enhanced system can be improved
when the noise prior knowledge is used. More specifically,
when a=0.1, the proposed method based on SEGAN achieves
2.319 for PESQ. However, as for SEGAN baseline, it is only
2.269. Meanwhile, when «=0.8, the SNRovl and SNRseg
of the proposed method based on SEGAN are 16.563 and
8.090. But as for SEGAN baseline, they are only 13.775 and
6.210. When the SNR is very low, predicting clean speech
can be very difficult as noise dominates the speech signals.
Therefore, when the noise prior knowledge is used, enhanced
signals can borrow knowledge from the estimated noise. These
results suggest that the noise prior knowledge can improve the
performance of speech enhancement and reduce the distortion
of target speech.

2) GSEGAN vs. SEGAN: Table I shows that when the
regular CNN is replaced by gated CNN, GSEGAN («a=0)
gets slightly worse PESQ than SEGAN. However, in all the
other metrics (SNRovl and SNRseg), GSEGAN outperforms
the SEGAN method. More specifically, the GSEGAN achieves
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Fig. 3. An example of noisy, SEGAN, the proposed method and clean
spectrogram for a speech segment from the test set. (a):spectrogram of the
noisy speech; (b):SEGAN (baseline); (c):the proposed method (A = 1.0);
(d):clean speech.

1.672 and 0.527 improvement for SNRovl and SNRseg com-
pared with SEGAN. This indicates that the gated CNN can
deal with the raw waveform better than regular CNN. Mean-
while, it also suggests that the advantage of gated CNN in
dealing with the long-term temporal dependencies.

In addition, when « gets larger, for example a=1.0, it means
that all of the background-noise information is considered.
Compared with SEGAN, the GSEGAN achieves a 0.06, 2.843
and 2.377 improvement for PESQ, SNRovl and SNRseg,
respectively. It reveals the effectiveness of the GSEGAN in
learning complex and detailed information at waveform level.

3) Evaluation of the proposed method : Finally, when the
GSEGAN and noise prior knowledge are used simultaneously,
the proposed methods are superior to the SEGAN baseline in
most case. Especially, when a=1.0, the proposed method beats
baseline SEGAN in all objective measures. More specifically,
the proposed method gets 2.284 for PESQ, 17.656 for SNRovl
and 8.935 for SNRseg. Compared with SEGAN, the proposed
method produces a relative improvement of 0.7%, 28.2%
and 43.9% for PESQ, SNRovl and SNRseg, respectively.
These results confirm that the proposed GSEGAN with noise
prior knowledge can improve the performance of the speech
enhancement.

As an example, Figure 3 shows an example of noisy,
SEGAN, the proposed method and clean spectrogram for a
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speech segment from the test set. Notice that, compared with
the spectrograms of clean speech, the harmonics of the pro-
posed model are preserved well, and the formant structures are
seen to be effectively preserved in the reconstructed speech.
Those indicate that the noisy speech is effectively enhanced by
the proposed model. On the other hand, the baseline SEGAN
can enhance the noisy speech, but the formant structure is
not clear compared with the proposed method. For example,
compared with (c) in Figure 3, we can see that in (b)
some formant structures are not reconstructed and some noise
signals are not removed very well (marked in the black boxes).

V. CONCLUSIONS

In this work, we propose a gated convolutional GAN method
with noise prior knowledge for speech enhancement. Different
from SEGAN, the proposed method uses gated CNN instead
of regular one. The reason is that the gated mechanisms have
an excellent potential for capturing long-term structures. In
order to address the low-SNR signals speech enhancement’s
problem, our proposed method not only predicts the clean
speech, but also uses the noise prior knowledge to instruct the
learning of noise and assist the estimating of target signals.
Results show that the proposed method outperforms SEGAN
baseline, with a relative improvement of 0.7%, 28.2% and
43.9% for PESQ, SNRovl and SNRseg, respectively. In the
future, we will explore the proposed method for multi-channel
speech enhancement.
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