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Abstract—Far-field speech recognition is becoming a hot topic
in research and industrial applications. In this paper, in order
to improve far-field speech recognition performance, we propose
to use multiple fixed beamformers with a spacial Wiener-form
postfilter (MFB-SWP) to suppress noise and interference. Our
proposed method consists of two parts, beamforming and post-
filter estimation. First, multiple fixed beamformers are designed
and each of them aims at one specific direction. Next the
target speech is estimated using the fixed beamformer aiming
to the target direction, and the noise and interference signals
are estimated using the remaining beamformers. After that,
we calculate a spacial Wiener-form time-frequency and frame-
level gains, as postfilter to further reduce the residual noise
and interference. Compared with a single fixed beamformer, the
proposed MFB-SWP method can suppress noise and interference
significantly. It is also computationally more efficient comparing
with other adaptive beamforming methods. Our experiments
showed that proposed method achieved 16-50% relative character
error rate (CER) reduction compared with using the single fixed
beamformer only.

Index Terms—far-field speech recognition, fixed beamformer,
spacial Wiener postfilter, MFB-SWP

I. INTRODUCTION

In recent years, thanks to the development of deep learning
techniques, big data and powerful computation resources, the
performance of automatic speech recognition (ASR) has been
improving significantly. With the increasing popularity of far-
field applications, far-field speech recognition has become a
hot topic. However, it remains a tough problem due to the
complexity of acoustic environments in far-filed scenarios.
First, the energy of speech signals decays with the propagated
distance from the sound source to the microphone, and thus
the captured signals are weak the further they go. Secondly,
room reverberation can severely degrade ASR performance,
especially the late reverberation [1]. Thirdly, interference by
surrounding speech, music and noise is very common in far-
field scenarios. Often seen in real applications, all the three
problems can occur simultaneously. Room reverberation and
noise interference, compounded with the decay by distance,
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often result in low signal-to-noise ratio and ASR becomes
highly sophisticated.

In order to tackle the foregoing problems, many algorithms
have been proposed. Based on the number of recording mi-
crophones, these methods can be divided into two categories,
single-channel methods and multi-channel methods. In this
paper, we focus on the multi-channel case. Compared with
the single channel case, multiple microphones can give much
more spatial information. For example, in order to alleviate the
effect of reverberation, a generalized multi-channel weighted
prediction error (WPE) method [2] was proposed. When
multiple microphones are available, beamforming techniques,
such as minimum variance distortionless response (MVDR)
and generalized sidelobe canceller (GSC) beamforming [3],
can be used to perform signal enhancement and interference
suppression. Recently, due to successful application to single
channel speech enhancement [4], [5], deep learning is also
applied to estimate adaptive beamforming parameters [6], [7].

In complex acoustic environments, current beamforming
techniques have very limited capability in de-noising and
suppressing interference. Usually beamforming is followed by
a post-filter to reduce the residual noise [8]. The speech distor-
tion weighted multi-channel Wiener filter (SDW-MWF) [9] is
a popular postfilter, which can be decomposed into an MVDR
beamfomer and a single-channel post-filter. In [10], Warsitz et
al. proposed a generalized eigenvalue (GEV) decomposition
based beamforming approach. Because the GEV beamformer
is designed to maximize the output SNR, it may introduce
speech distortion. In order to control the distortions, they
proposed the blind analytical normalization (BAN) postfil-
ter for compensation. They further proved that GEV with
the BAN postfilter equals to MVDR. Some single channel
speech enhancement methods can also be combined with
beamforming techniques. For example, Cohen et al. [11],
[12] combined the modified version of log-spectral amplitude
estimator (OMLSA) [13] with a generalized sidelode canceller
(GSC) structure.

Our previous work [14] combined multiple fixed beamform-
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ers with ROVER [15] to improve far-field speech recognition
system performance. In this paper, we propose to use multiple
fixed beamformers with a spacial Wiener-form postfilter
(MFB-SWP) to suppress the noises and interference from
non-target directions. First, multiple fixed beamformers are
designed and each of them only steers to a specified direction.
Once the target speech direction is known, the output of the
beamformer which steers to this direction will be selected as
the estimated target speech, and the remaining beamformers’
output will be regarded as the estimated noise and interfer-
ence. After we obtain these estimations, a Wiener-form time-
frequency gain can be calculated as a postfilter. Compared
with single fixed beamformer (FB), the proposed MFB-SWP
method can suppress noises significantly. Compared with other
adaptive beamforming methods such as MVDR and GSC,
our MFB-SWP is more computationally efficient. We evaluate
the proposed front-end enhancement method in a Mandarin
speech recognition task. Instead of simulating far-field multi-
channel speech, we recorded several test corpora with multi-
ple microphones in real conditions. Our experimental results
showed that the proposed MFB-SWP approach can reduce
character error rates (CER) compared with the FB and GSC
beamformers, up to 50% relative improvement.

II. THE MFB-SWP METHOD

As mentioned earlier, we use multiple fixed beamformers
and each of them is steered to one specific direction. We follow
the fixed beamformer proposed by [16]. In this section, we first
introduce the basic idea of fixed beamformers, and then we
elaborate our proposed method.

A. Fixed beamformers with the white noise gain constraint

One of the disadvantages of fixed beamformers is the poor
white noise gain (WNG), especially in the low frequency
range. In paper [16], the authors introduced the WNG con-
straint during the fixed beamformer design. For a microphone
array with N sensors, the beamformer’s coefficient at frequen-
cy ω is w(ω) = [w0(ω), ..., wN−1(ω)]

T . The response of the
filter is given by Reference [3]:

B(ω, θ) =
N−1∑
n=0

wn(ω)e
−jωτn(θ) (1)

where θ is the angle of arrival, τn is the relative delay time.
The WNG is defined by

A(ω) =
|wT (ω)d(ω)|2

|wH(ω)w(ω)|
(2)

where dT (ω) = [exp(−jωτ0θd), ..., exp(−jωτN−1θd)] de-
notes the steering vector and θd is the true direction where
the speech is from. Superscript H is the conjugate transpose
operation.

Fig. 1. The design of multiple fixed beamformers.

The idea behind the design is to optimally approximate a
desired response, B∗(ω, θ), by B(ω, θ) in the least square
sense with some constraints. Typically, a numerical solution
is obtained by dividing the frequency range into F frequency
bins ωf , f = 0, ...F −1, and the possible source direction into
M angles θm,m = 0, ...M − 1. The WNG constraint puts a
minimum value on A(ω) ≥ γ > 0, which enables the problem
to be formulated as a convex problem. The MATLAB CVX
Toolbox [17] is used in this paper. Design details can be found
in [16].

B. MFB-SWP

The noisy signal captured by a microphone array is
y(ω, t) = [y0(ω, t), ..., yN−1(ω, t)]

T in the frequency domain.
Once the beamformer’s coefficient w(ω) is designed, the
enhanced signal can be calculated by

y(ω, t) = wH(ω)y(ω, t) (3)

The beamformer described in Section II-A can suppress
interference from the non-target direction to some extent, but
the performance is still limited. There are still a lot of residual
noises in the enhanced signal. Further noise reduction is
necessary. We propose to use multiple fixed beamformers with
each directed to one specific direction, as shown in Figure 1.
In the figure, we show there is one speech signal from a target
speaker at one position, and two interference signals from two
different positions. Here we have a linear microphone array
with N microphones and seven fixed beamformers are applied.
The green microphone is steered to the target speaker and the
others steered to other directions, including the directions of
the interference. Note that, we can use several fixed beam-
formers to cover the whole space because we can control the
beam width during beamformer’s design.

To formulate the design, assume there are P fixed beam-
formers, w1(ω),w2(ω), ...,wP (ω). Further assume beam-
former Q directs to the target direction, then the enhanced
target signal is

ŷ(ω, t) = wH
Q (ω)y(ω, t) (4)
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Even the signal is enhanced by the target direction beam-
former, there are still a lot of residual interference signals.
In order to estimate the interference, the signals from other
non-target directions will also be estimated by the remaining
beamformers

n̂(ω, t) =

P∑
p=1,p̸=Q

wH
p (ω)y(ω, t) (5)

Then, a Wiener form gain in time-frequency domain can be
estimated by

Gtf (ω) =
ŷ(ω, t)

ŷ(ω, t) + n̂(ω, t)
=

ξ̂(ω, t)

ξ̂(ω, t) + 1
(6)

where
ξ̂ω,t =

ŷ(ω, t)

n̂(ω, t)
(7)

is an estimated SNR. Because of the spacial leakage of the
fixed beamformers, the estimated interference signals’ energy
is usually larger than the original one, so a discount factor
is introduced here. Equation 7 shares a similar form as the
parametric Wiener filter [18], except that the spacial informa-
tion is used to estimate the interference signals. Therefore we
call this postfilter a spacial Wiener postfilter (SWP). Note that
when there is no interference, n̂(ω, t) should be very small,
and Gtf (ω) should be 1.0. Otherwise when there is a strong
interference, Gtf (ω) should be small.

Furthermore, we calculate a time level gain by summing
Gtf (ω) over all frequencies

Gt =
∑
ω

Gtf (ω) (8)

The final enhanced signal can be obtained by applying
Equations 7 and 8 to Equation 4

s(ω, t) = ŷ(ω, t)Gtf (ω)Gt (9)

III. EXPERIMENTS

In this paper, we evaluate the effectiveness of speech
enhancement algorithms by speech recognition error rates. In
particular, we carried our experiments on Mandarin speech
recognition and hence character error rates (CER) are mea-
sured. We performed experiments on various conditions, in-
cluding different noise conditions, reverberation and the ge-
ometries of microphone array arrangement.

A. Data collection

Instead of simulating multi-channel data, we recorded the
test corpora using smart TVs and smart home speakers, with
various noise and reverberation conditions in order to cover
the real application scenarios. Note that in this paper, as we
only focus on beamforming techniques, the direction of the
target speaker is known and fixed. The test corpora consist of

natural sentence queries, keywords, and some command and
control, in Mandarin. Some examples are provided in Figure 3.

1) Recording devices: As shown in Figure 2, the recording
device is Mobvoi’s AI module with a microphone array
development kit. The microphone array has two different
geometries. The first one is a 4-element uniform linear array
(ULA) with 4cm mic interval. The second one is a 6-element
uniform circular array (UCA) with a customized diameter
from 2cm to 12cm. In this paper we used an UCA with 4cm
diameter, and we do not use the data collected by the two
microphones at 0◦ and 180◦.

Fig. 2. Mobvoi’s microphone array modules. The left one is the uniform linear
array (ULA) and the right one is the uniform circle array (UCA).

2) Recording rooms, noise and interference: Two rooms
with different reverberation were selected during our data
collection. First, we want to verify the performance when there
is no to little reverberation. This room is regarded as a virtually
anechoic room. In this anechoic room, several volunteers read
the transcripts from a fixed angle and fixed distance away from
the microphone array, in total 330 utterances. Two background
noises (speech and/or music) were replayed simultaneously by
two high-fidelity (Hi-Fi) speakers at two different but fixed
angles and distances away from the microphone array. Thus
this test set is a noisy test set.

The second room is a normal sized (5m by 8m) living room
with reverberation, which is the most common scenario that
we care about. In the living room, 2700 clean utterances were
recorded first, with a single close-distance microphone. Then
a clean test set of 2700 utterances was created by replaying
these utterances via a Hi-Fi speaker from a fixed angle and
fixed distance away from the microphone array. Separately, the
same 2700 utterances were replayed the second time with one
background noise (music and speech) replayed simultaneously
at a different but fixed angle and distance away from the
microphone array. So for the living room scenario, there are
two test sets: one clean and one noisy test set. Table I shows
the details of our recording setups.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

635



Chinese queries English equivalent

 

1 1  

Play Game Throne 

Season 1 Episode 1

 I want to watch Forrest Gump

 Hi, Xiao Wen

 Hello, Wen Wen

Fig. 3. Example queries of our test corpora.

TABLE I
DETAILS OF OUR RECORDING SETUPS.

Room RT60 (ms) Device Noise
Num. of

utterances Speaker

Anechoic ∼50
4mic ULA
4mic UCA Yes 330 Human

Living ∼250 4mic ULA
Yes

&No 2700
Hi-Fi

Speaker

B. Acoustic and language model

The acoustic model used in our work is an 11-layer TDNN,
trained with the lattice-free MMI criterion [19] using Kaldi.
The model was trained using 16,000 hours of near-field speech
data and thus is not optimized for far-field ASR. The language
model is a 4-gram word-based model with a vocabulary size
of 220k.

C. Speech recognition results

Since our focus is on far-field speech recognition, we only
evaluate our proposed method by reporting speech recognition
error rates.

Our front-end speech enhancement pipeline includes multi-
channel beamforming, followed by single channel noise re-
duction (NR) [13] to further reduce noise. We compared our
proposed MFB-SWP approach with GSC beamformer [12],
and also with fixed beamformer (FB) as mentioned in Sec-
tion II-A. Another comparison is with blind source separation
(BSS), where a multi-channel BSS method proposed by [20]
was used.

We first conducted our experiments in a virtually anechoic
room, in order to exclude the effect of reverberation. The target
speaker was in a known and fixed direction, while interference
speakers were in other directions. As shown in Table II, the
proposed MFB-SWP method outperforms all other methods in
all microphone array geometries. Note that, for the 2-mic ULA
array, 2 microphones with 8cm interval were selected from the
4-mic ULA array. Because our data is very noisy and SNR is
pretty low, the single-channel speech recognition performance
is very bad. Comparing with FB+NR, our proposed method
obtained 16.7%, 26.0% and 50.8% relative CER reduction in
the 2-mic ULA, 4-mic ULA and 4-mic UCA respectively.

The next set of experiments was conducted in a normal-
sized living room, with a certain level of reverberation. As

TABLE II
CER IN A VIRTUALLY ANECHOIC ROOM, WHERE THERE IS NO

REVERBERATION, BUT NOISE AND INTERFERENCE EXIST. NR=SINGLE
CHANNEL NOISE REDUCTION.

Setup Anechoic Room
2 Mic ULA 4 Mic ULA 4Mic UCA

NR 80.71% 77.90% 73.97%
BSS + NR 71.36% 66.42% 62.87%
GSC + NR 70.23% 50.97% 54.72%
FB + NR 71.15% 49.27% 69.49%

MFB-SWP + NR 59.29% 36.44% 34.22%

TABLE III
CER OF CLEAN AND NOISY TEST DATA IN A NORMAL SIZED LIVING

ROOM, WHERE REVERBERATION EXISTS.

Setup
Living Room
4 Mic ULA

Clean Noisy
NR 27.35% 76.07%

BSS + NR 29.16% 80.54%
GSC + NR 20.25% 65.52%
FB + NR 37.93% 66.44%

MFB-SWP + NR 23.61% 63.19%

shown in Table III, on the noisy test set, our proposed MFB-
SWP method outperformed all other methods. Particularly it
achieved a relative 5% CER reduction compared with FB+NR,
or 16.9% compared to NR only. On the clean test set, although
it was worse than GSC+NR, it still reduced CER relatively by
13.7% compared to NR only.

From Table II and Table III, we see our algorithm is more
effective in eliminating noises than de-reverberation. Therefore
our future work would be to combine de-reverberation with
beamforming to further improve ASR.

IV. CONCLUSIONS

In this paper, we propose a novel and highly efficient beam-
former with a postfilter, named MFB-SWP, that can be used
with different microphone geometries, and on resource-limited
embedded devices. We demonstrate its effectiveness in real
user scenarios. One significant advantage of our algorithm is
that it requires fewer computing resources, comparing to other
adaptive beamforming methods. In this case, filters can be
generated with offline tools and deployed directly to embedded
devices as weight parameters. On the other hand, the direction
of the target speech is assumed to be known in all experiments
reported here. Our future work will involve combining the
proposed method with direction of arrival (DOA) estimation
and de-reverberation algorithms to perfect our microphone
array modules.
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