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Abstract—In this paper, we investigate the variation in the
performance of a deep learning-based speech synthesis (DLSS)
system based on the configuration of output acoustic parameters.
Our method is mainly applicable for vocoding-based statistical
parametric speech synthesis (SPSS), which has advantages in low-
resource scenarios. Given the independence assumption of the
source-filter model for the spectral and fundamental frequency
F0 parameters, we propose a reliable network architecture for
training acoustic parameters. Particularly, the F0 parameter
suffers from high fluctuation and an extremely low number of
dimensions. To relieve these problems, we introduce a context-
window approach. Furthermore, we apply data augmentation to
the proposed structure to overcome a lack of training data, which
is a frequent issue with multi-speaker TTS systems. Experimental
results confirm the superiority of the proposed algorithm over
conventional ones in both single-speaker and multi-speaker TTS
setups.

I. INTRODUCTION

Recently, research on deep learning-based speech synthesis
(DLSS) systems has advanced significantly thanks to the
superior capability of deep neural networks in modeling the re-
lationship between linguistic and acoustic parameters [1], [2],
[3]. In the training stage, a typical DLSS system estimates the
optimal network parameters by learning a relationship between
the linguistic and acoustic parameters. When input text is
given, i.e. during the synthesis stage, acoustic parameters with
the highest likelihood are predicted from the trained networks,
then a speech waveform is generated using a vocoding process
using these predicted acoustic parameters [1], [4].

DLSS systems can be categorized into two types depending
on acoustic parameter that is to be estimated. The first type
is a family of Tacotron-like end-to-end structures [5], [6],
[7] that estimates the mel-spectrum for acoustic parameters
as a condition vector for a neural vocoder, i.e. WaveNet [8].
The second type estimates vocoding parameters which can be
derived as spectrum- and excitation-related parameters. These
estimated vocoding parameters are fed into statistical vocoders
to generate speech waveforms.

In this paper, we choose the second system type referred as
statistical parametric speech synthesis (SPSS), as a baseline
because of its high flexibility in terms of speaker adaptation
and its reasonably good synthesized speech quality in a small
footprint system setup [9]. In addition, the SPSS approach has
a much shorter training time than the other DLSS system type.

DLSS systems do not consider the independence assumption
of the source-filter parameters [10] or the dimensional imbal-
ance between these parameters meaning training results are
often biased [11], [12]. Note that the number of dimensions for
spectral parameters, e.g., line spectral pairs (LSPs), is typically
larger than 20, while the number of dimensions for excitation
parameters, e. g., fundamental frequency (F0), is only 1 per
frame.

Several papers have concluded that these acoustic param-
eters are required to be trained separately [13], [14], [15],
but they do not clearly explain the reason for this conclusion.
In addition, the authors do not consider the important char-
acteristics of the F0 parameter during the training process,
i.e., its severe fluctuation in consecutive frames due to high
variance. In [11], [16], [17], the authors attempted to unravel
the complicated characteristics of F0 using wavelet transforms
[18] for text-to-speech (TTS) and voice conversion systems.
Although they insisted that wavelet transforms enhanced mod-
eling performance by decomposing the F0 parameters into a
hierarchical structure, but still they could not fully analyze the
fluctuating characteristics in the training process.

To further improve acoustic modeling performance, we
investigate various configurations of acoustic parameters for
a deep learning-based framework. Based on the results, we
propose a reliable architecture under the assumption of a
source-filter vocoding structure. The proposed architecture
successfully resolves the issues surrounding F0 modeling,
i.e., low dimensionality and high fluctuation. We apply the
structure of the proposed system to a data augmentation task.
It is well-known that DLSS systems require a large volume of
training data to obtain high-quality synthesized speech, which
requires a long time and is expensive to record. The proposed
method 1 is very useful when a network is trained using
databases from multiple speakers. We could get benefit even
if the characteristic of each speaker’s database is different.

The remainder of this paper is structured as follows. Section
II investigates the variation in the performance for different
combinations of acoustic parameters in a source-filter model
framework. In Section III, the proposed approach is described
in detail, and the effectiveness of using data from multiple

1The proposed approach is useful even when the database for each speaker
is not large.
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Table I: Spectral modeling performance [dB]

LSP only LSP and BAP
All features
combined

LSD [dB] 5.00 4.71 4.79

speaker to improve performance is investigated. The superi-
ority of the proposed system is verified with experiments in
Section IV, while Section V summarizes and concludes the
paper.

II. IMPACT OF DIFFERENT ACOUSTIC PARAMETER
COMBINATIONS ON A DLSS SYSTEM

This section investigates various strategies to increase the
modeling accuracy of acoustic parameters, e.g., spectral and
F0 parameters, in a deep learning-based training process. First,
we seek an effective combination of acoustic parameters by
examining he interactions between these parameters. Even
though the experimental results in [13], [14] showed that it
would be better to train spectral and F0 parameters separately
because of the independence assumption of the source-filter
model, there was no clear explanation for this. Second, we
investigate a method to increase F0 modeling accuracy by
solving the imbalance in dimension issue.

A. Experimental environment

The systems in this section use a 160-minute speech dataset.
The speaker is male and a native speaker of Korean. The input
features are linguistic parameters consisting of phonetic and
syntactic information and phoneme duration, with a total of
210 dimensions. The output features are acoustic parameters
extracted from the STRAIGHT vocoder [19]. The acoustic
parameters consist of LSP, F0, band aperiodicity (BAP),
and a voiced/unvoiced (V/UV) flag including their dynamic
parameters with a total of 139 dimensions.

The network architecture chosen for the experiment is a
stack of vanilla fully-connected (FC) layers that consist of
three hidden layers with 1024 nodes. We use stochastic gra-
dient descent (SGD) with momentum [20] as the optimization
criterion [21], [22]. The weights of the networks are initialized
by applying a layer-wise pre-training method [23] and different
learning rates (0.001, 0.005, and 0.01) and momentum values
(0.5, 0.5, and 0.9) are utilized at each step.

Log-spectral distance (LSD) and root mean-square error
(RMSE) are used to evaluate the estimation accuracy of the
spectral and F0 parameters, respectively. Both LSD and RMSE
measure Euclidean distance between generated acoustic pa-
rameters and the original one extracted from recorded speech.

B. Analysis of spectral parameter modeling performance

We compare spectral modeling performance for following
three configurations as follows.

• LSP-only system: LSP and V/UV
• LSP and BAP system: LSP, V/UV and BAP

• All features combined system: LSP, V/UV, BAP and
logarithmic F0 (LF0).

All three configurations include LSP and V/UV because gen-
erating LSP is a target task and V/UV is strongly correlated to
the 0th LSP coefficient, which represents energy of observation
[24]. The final two configurations have the spectral-related
parameter BAP, while only the final configuration has the
excitation-related parameter, LF0. For better trainability, LF0,
which has lower variance, is adopted instead of using F0
directly.

All of the network architectures and settings are exactly the
same except for the output parameter settings. Table I shows
LSDs obtained in the three configurations.

Because LSP and LF0 are assumed to be independent, it
may not be beneficial to train all acoustic parameters together
within a single output layer. Training with the spectral-related
parameters LSP and BAP produces the best performance.

C. Analysis of F0 parameter modeling performance

In this subsection, we focus on the influence of the spectral
parameters when modeling F0. We also attempt to resolve the
dimension problem that occurs in the F0 parameter estimation
process. First, we compare the following two configurations.

• LF0-only system: LF0 and V/UV
• All features combined system: LF0, V/UV, BAP, and

LSP.

Table II presents the RMSE values obtained from each
configuration. Modeling F0 solely produces a lower perfor-
mance than the configuration with all features combined,
which does not match with the results of the spectral parameter
modeling in the previous subsection. However, it is unclear
whether the cause of the poor performance is because spectral
parameters are helpful for training F0 parameters or because
the dimensional imbalance between the spectral and F0 pa-
rameters is a problem. Therefore, we compare two additional
configurations:

• Context LF0 system: Concatenated LF0 with previous
and succeeding frames and V/UV

• Context LF0, LSP and BAP system: Concatenated
LF0 with previous and succeeding frames and of all the
spectral parameters (LSP, BAP and V/UV)

Because utilizing F0 only from the current frame makes it
difficult to predict the change in F0 over time, we introduce
a context LF0 framework. Context LF0, widely utilized in the
automatic speech recognition (ASR) field [25], involves the
concatenation of succeeding LF0 parameters from previous
and subsequent frames. This context window enables to pro-
vide temporal information using consecutive frames, thus it is
also expected to resolve the low-dimensional data problem.

However, it is not clear whether spectral parameters will
be beneficial for the modeling of F0 even if the dimensional
mismatch issue is solved using the context-window method.
By comparing the context LF0 system with the context LF0,
LSP, and BAP system, the effectiveness of the use of spectral
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Table II: F0 modeling performance [Hz]

LF0 only
All features
combined

Context LF0
Context LF0,
LSP and BAP

RMSE [Hz] 14.38 11.91 11.52 19.95

parameters for F0 modeling can be verified. The network ar-
chitecture and settings are the same as described in Subsection
II-A. The context-window size is set to 44, i.e., previous and
22 subsequent frames.

As shown in Table II, F0 modeling accuracy is improved by
introducing the context-window method. On the other hand,
context LF0 modeling with spectral parameters produces a
lower performance than the context LF0 system. This means
that the separate training of acoustic parameters improves
modeling accuracy, thus it is clear that the reason for the
poor performance of the LF0-only system is the dimensional
imbalance issue. It can be concluded that the context-window
approach benefits the F0 modeling process by introducing
temporal patterns and resolving the dimensional problem, but
the spectral parameters have a negative influence on the F0
modeling process.

III. PROPOSED SYSTEM

Based on the experiments conducted in Section II, we
summarize the key factors related to source-filter model based
processing:

• It is better to separately train spectral and excitation
parameters.

• It is useful to introduce a context window approach for
F0 training.

Based on these conclusions, we propose a DLSS archi-
tecture that improves modeling accuracy by enhancing the
trainability of the acoustic parameters. Figure I depicts the
conventional and proposed architecture, respectively. The pro-
posed architecture on the right side of the figure is referred
to as a feature-type dependent architecture (FD-DLSS) and
the conventional DLSS architecture on the left is referred to
as feature-type independent architecture (FI-DLSS). The pro-
posed architecture separates the hidden and output layers for
the spectral and F0 parameters. This enables the independence
assumption of the source-filter model to be kept. Specifically,
the context window exploits temporal patterns to overcome the
considerable fluctuation of the F0 parameter.

Even though the proposed architecture improves modeling
performance, a sufficient volume of speech data is required to
reliably train the architecture. To cope with the lack of data,
one solution is to utilize data from other speakers. However,
we should be very careful not to distort the key characteristics
of the target speaker while generating synthesized speech.
Therefore, we extend the proposed architecture to ensure that
is suitable for data augmentation.

Originally, data augmentation was designed to obtain more
generalized models by seeking transform-invariant characteris-
tics within a diverse range of data, and this technique has been

Figure I: Conventional feature-type independent DLSS (FI-
DLSS) structure (left) and proposed feature-type dependent
DLSS (FD-DLSS) structure (right)

Figure II: Conventional SHL-based feature-type independent
DLSS (SHL-FI-DLSS) structure (left) and proposed SHL-
based feature-type dependent DLSS (SHL-FD-DLSS) struc-
ture (right)

successfully employed in a wide range of tasks such as speech
enhancement and speech recognition [26], [27], [28]. The
architecture with data augmentation is is depicted in Figure
II. We introduce a shared hidden layer (SHL) structure [29]
that shares hidden layers and only separates the output layers
to define the corresponding tasks. Though the objective of
finding a mapping relationship between linguistic and acoustic
parameters is the same because this is type of TTS system,
the acoustic characteristics of the target speaker should not be
changed with the use of different speakers, so the use of an
SHL structure is a desirable option.

The generation phase is the same as for the conventional
DLSS system. The acoustic parameters are estimated from the
linguistic parameters extracted from the given input text. Max-
imum likelihood parameter generation with global variance
[4] is used to avoid the over-smoothing and then synthesized
speech us obtained using a vocoder.
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Table III: Experimental result for a single speaker’s database.
FI-DLSS = feature-type independent-based system ; FD-DLSS
= feature-type dependent system

FI-DLSS FD-DLSS

LSD [dB] 4.79 4.71

RMSE [Hz] 11.92 11.52

Figure III: Performance measurement of data augmentation
scenario

IV. EXPERIMENT

A. Corpus construction and system notation

In the following experiments, we use a Korean speech
database recorded by five male speakers. The linguistic and
acoustic parameters are the same as those described in Section
II with the only difference being the output feature configura-
tions.

The output feature configuration of the spectral feature
estimation network consists of LSP, BAP, and V/UV and their
dynamic information with 136 dimensions in total. For the
F0 estimation network, a combination of context-window LF0
size of 22, their dynamic information and V/UV parameters is
the output feature. The hidden layer is a stack of four FC layers
with 1024 nodes in both networks, optimized using the SGD
algorithm. For initialization, a layer-wise back-propagation
method is used. The learning rate and momentum are set to
0.01 and 0.9, respectively.

B. Analysis of the proposed structure

To verify the superiority of the proposed FD-DLSS architec-
ture, we compare the conventional FI-DLSS. The experimental
results are presented in Table III. The proposed architecture
produces a better performance than the conventional architec-
ture for both spectral and F0 modeling.

C. Analysis on proposed structure with data augmentation

In this subsection, we further demonstrate the suitability of
our model for use with data augmentation to resolve the lack
of data, which is inevitable when the training database is small.
We conduct experiments in which we increase the number of
speakers when training the structure. The speech database size
of each speaker is set at 80 minutes to allow a fair comparison.
As described in Section III, the SHL-based structure is used
to separate different speaker characteristics in separate output

layers. The network settings are the same as described in the
previous subsection.

The experimental results are presented in Figure III. Over-
all, spectral modeling accuracy improves as the size of the
database increases, which confirms that data augmentation
also works for speech synthesis. Furthermore, the proposed
parameter-separated training approach (SHL-FD-DLSS) im-
proves the modeling accuracy compared to the conventional
method. The use of three speakers (3spks) produces a slightly
better performance compared to the use of five speakers
(5spks) regardless of the type of structure employed.

For F0 modeling, the SHL-FD-DLSS architecture improves
model accuracy as the volume of data increases, whereas
the accuracy of the SHL-FI-DLSS is worsens. Because the
data is augmented using speech data from several speakers,
the significant inter-variability of the F0 parameters prevents
the modeling of the F0 parameter for the target speaker
within the SHL-FI-DLSS architecture. However, our proposed
architecture overcomes this problem by including long-term
temporal features via the concatenation of adjacent frames. In
addition, half of the SHL-FD-DLSS structure is designed to
fully concentrate on modeling F0, which results in improved
performance.

D. Subjective evaluation

To evaluate the perceptual quality of the proposed system,
ABX preference listening tests were conducted. We compared
our proposed FD-DLSS system with the conventional FI-
DLSS system during two sessions, one with a single-speaker
and one with multiple-speakers (SHL-*-DLSS). Thirteen na-
tive Korean listeners were asked to choose their preferred
synthesized speech sample based on speech quality after
listening to 20 sentences per session.

Table IV presents the scores for the ABX preference test.
The fourth column of Table IV indicates that the proposed
architecture is clearly better than the conventional architecture
for both the single- and multiple-speaker sessions. In partic-
uler, for the single-speaker data 95.4% of the listeners selected
the proposed architecture, which means that our proposed
system is robust when faced with a laparticularck of data.

V. CONCLUSIONS

In this paper, we proposed a reliable network architecture
that allows feature-dependent training and considers the inde-
pendence assumption of the source-filter model for the spectral
and excitation parameters. The proposed DLSS architecture
also solves the dimensional imbalance issue for the F0 parame-
ter by introducing the context-window method. The superiority
of the proposed architecture was verified through objective and
subjective tests, with the proposed method producing a strong
performance in a multiple-speaker TTS environment.
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Table IV: Subjective preference test results (%)

FI-DLSS no preference FD-DLSS p-value

Single-spk 1.5 3.1 95.4 < 10-13

Multi-spk 25.0 20.1 54.9 < 10-10

of emotional expression service to support hearing/visually
impaired)
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