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Abstract—The Chinese population has been aging rapidly
resulting in the largest population of people with dementia.
Unfortunately, current screening and diagnosis of dementia rely
on the evidences from cognitive tests, which are usually expensive
and time consuming. Therefore, this paper studies the methods
of detecting dementia by analyzing the spontaneous speech pro-
duced by Mandarin speakers in a picture description task. First,
a Mandarin speech dataset contains speech from both healthy
controls and patients with mild cognitive impairment (MCI) or
dementia is built. Then, three categories of features, including
duration features, acoustic features and linguistic features, are
extracted from speech recordings and are compared by building
logistic regression classifiers for dementia detection. The best
performance of identifying dementia from healthy controls is
obtained by fusing all features and the accuracy is 81.9% in
a 10-fold cross-validation. The importance of different features
is further analyzed by experiments, which indicate that the
difference of perplexities derived from language models is the
most effective one.

Index Terms—Alzheimer’s disease, dementia detection, speech
analysis, logistic regression, language model.

I. INTRODUCTION

Dementia is a neurodegeneration disorder that develops for
years , with Alzheimer’s disease (AD) being the most common
underlying pathology [1], [2]. The course of dementia can be
divided into four stages, i.e., mild cognitive impairment (MCI)
stage, early stages, middle stage and late stage, according to
the progressive degree of cognitive and functional impairment.
During this process, patients suffer from short memory loss
at the beginning and completely depend upon caregivers at
last. The Chinese population has been aging rapidly resulting
in the largest population of people with dementia. Statistics
show that the prevalence of dementia among individuals aged
65 years and older were 5.14% in China [3] . The estimated
total annual costs of dementia in China were US$47.2 billion
in 2010 and were predicted to reach US$69.0 billion in 2020
and US$114.2 billion in 2030 [4].

Current diagnosis of dementia relies on the evidences from
cognitive tests, biochemical markers, medical imaging, etc.,
which are usually expensive and time consuming. Further-
more, there is no cure for dementia so far. Thus, it is valuable
if some low-cost and convenient detection methods can be

developed to find the dementia patients at their early-stage for
proper prevention and intervention therapies.

Language impairment is one of the main symptoms of
dementia, which generally appears at the early stages of
the disease [5], [6]. Some investigations [7]–[10] found that
AD patients suffered from word finding and word retrieval
difficulties. Their performances on some cognitive tasks, such
as picture description and sentence repetition, were distinct
from healthy people. Thus, the effective detection of dementia
can be achieved by extracting proper features from speech
recordings and building classifiers in a data-driven way.

Several databases for studying the speech and language im-
pairment of dementia patients have already been established.
DementiaBank Pitt corpus [11] contained the recordings from
312 English speakers taking a picture description task. Most
of previous studies using this dataset [12]–[15] aimed to make
a binary classification between AD group and control group,
which had about 250 and 240 samples in the dataset. Fraser et
al. [12] extracted total 370 features considering part-of-speech
(POS), syntax, acoustics and other aspects of linguistics, and
obtained an accuracy of 81% in binary classification. Warnita
et al. [13] used a gated convolutional neural network (GCNN)
which utilized only the audio data and achieved an accuracy
of 73.6%. Wankerl et al. [14] and Fritsch et al. [15] calculated
the difference of perplexities from the language models of two
groups. Using this single feature, their methods achieved an
accuracy of 77.1% and 85.6% at equal-error-rate respectively.

A Germany database named the interdisciplinary longitudi-
nal study on adult development and aging (ILSE) was created
by Weiner et al. [16]. In their latest work, they utilized 98
recordings from 74 recruited people. The participants were
divided into three group, including healthy controls, the ones
with aging-associated cognitive decline (AACD) and the ones
with Alzheimers disease (AD). The participant’s speech was
recorded in biographic interviews. In the latest experiments,
they extracted features from the conversational speech through
voice activity detection (VAD) and speaker diarization. Their
three-way classifier achieved the average recall (UAR) of
0.645 [17].

The Hungarian MCI-mAD database was built by Hoffmann
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et al. [18]. As introduced in their recent work [19], there
were 75 speakers and 225 recordings captured form three
tasks, immediate recall, previous day and delayed recall. They
obtained an accuracy of 80% when identifying MCI and mild
AD using linguistic features.

Satt et al. [20] recruited 15 health controls and 26 patients
suffer from dementia in France and collected their recordings
of 4 cognitive tests. They obtained an equal error rate (EER) of
87% for binary classification using carefully designed acoustic
features for different tasks. However, this result lacked large-
scale verification.

To the best of our knowledge, there are no existing large-
scale Mandarin speech dataset for developing and verifying
dementia detection models so far. Therefore, we first con-
structs a dataset containing spontaneous speech produced by
Mandarin speakers in a picture description task. The speakers
include healthy controls and patients with mild cognitive
impairment (MCI) or dementia. Then, this paper focuses on
the task of identifying dementia from healthy controls. Three
categories of features, including duration features, acoustic
features and linguistic features, are extracted and logistic
regression classifiers are built using these features. After fusing
the features of all categories, the dementia detection accuracy
of 81.9% is finally obtained. We also analyze the importance
of different feature categories by examining their weights
in logistic regression and their area under the curve (AUC)
values. The results show that linguistic features play the most
important role in our model.

II. DATASET

A. Subjects

Subjects were recruited from the Department of Neurology
and the Department of Memory Clinic of Shanghai Tongji
Hospital. All participants were with the complaint of memory
impairment and underwent a comprehensive neuropsycholog-
ical battery that included the Mini-Mental State Examination
(MMSE) [21], the Chinese version of the Montreal Cognitive
Assessment Basic (MoCA-BC) [22], the Clinical Dementia
Rating (CDR) [23], the Instrumental Activities of Daily Liv-
ing(IADL) [24], the Hopkins Verbal Learning Test-Revised
(HVLT-R) [25], the Shape Trail Test-A and B (STT-A, STT-
B) [26], the Boston Naming Test (BNT; the 30-item version)
[27], the Rey-Osterrieth Complex Figure Test (CFT) [28],
the Hamilton Depression Rating Scale [29] and the picture
description task. Speech recordings were collected at the same
time. All participants underwent cranial CT or MRI scan and
laboratory screening on folic acid, vitamin B12, thyroid func-
tion (free triiodothyronine(FT3), free tetraiodothyronine(FT4),
thyroid stimulating hormone(TSH)), treponema pallidum and
HIV antibodies. Their demographic and clinical information
was recorded at the same time. Exclusion criteria: 1) age
below 40 years; 2) less than 5 years of education; 3) definite
history of stroke; 4) definite history of other diseases of
the central nervous system such as infection, demyelinating
diseases, and Parkinson’s disease; 5) definite history of mental
illness such as schizophrenia, major depressive disorder; 6)

TABLE I
THE STATISTICS OF THE SUBJECTS IN OUR DATASET.

Group
(num-
ber)

Gender
(Male/
Female)

Age
mean
(std)

Education
mean
(std)

MoCA-
BC mean
(std)

MMSE
mean
(std)

CTRL
(138)

59/79 66.6 (9.3) 11.8 (3.0) 23.3 (3.0) 27.8 (1.6)

MCI
(179)

71/108 66.0 (9.6) 10.5 (2.9) 18.0 (4.4) 24.9 (3.4)

Dementia
(84)

39/45 74.3
(10.2)

10.2 (3.6) 11.1 (5.1) 18.1 (5.7)

All (401) 169/232 68.0 (9.8) 10.9 (3.2) 18.4 (6.0) 24.5 (5.0)

serious physical disease; 7) alcohol or drug addiction; 8) with
clinically significant abnormalities in folic acid, vitamin B12,
thyroid function, or syphilis antibody positive, HIV antibody;
9) unable to cooperate with neuropsychological tests. Written
informed consents were obtained from all participants. Finally,
the participants (also referred as subjects) were categorized in
three groups.

• Dementia – Dementia diagnosis was made according to
the core clinical criteria to dementia of NIA-AA estab-
lished in 2011 [30]. And three categories of dementia
patients were included: dementia due to Alzheimer’s
disease, dementia due to cerebral small vessel disorder,
Alzheimer’s disease mixed with cerebral small vessel
disorder.

• MCI – the participants who were diagnosed as MCI. MCI
diagnosis was made according to the guidelines of NIA-
AA established in 2011 [30].

• CTRL – the participants who joined the cognitive test
but were diagnosed as cognitively healthy.

At the time of preparing this paper, we have collected
recordings from more than 500 subjects. Some of them were
further filter out for the reasons like poor sound quality,
interview interruption, heavy dialect, etc. Finally, 401 record-
ings from 401 subjects were obtained, including 138 healthy
controls, 179 MCI patients and 84 dementia patients. The
distributions of their age, education, MMSE and MoCA-
BC scores are shown in Table I. This paper focuses on a
binary classification between healthy control and dementia.
Therefore, the data from MCI patients was not used in our
study.

B. Task

This paper aims at building a dementia detector using spon-
taneous speech recorded in the picture description task. The
picture description task was originally designed for the Boston
Diagnostic Aphasia Examination [31]. It required each partic-
ipant to say whatever happened in the picture (as shown in
Fig. 1) as much as possible, and allowed encouragement from
interviewer when participant had difficulties. The recording
was conducted in a general clinic room with the door closed.
For each subject, the interviewer and the subject’s speech was
recorded in a single audio file by a clip-on microphone placed
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Fig. 1. The picture of “Cookie Theft”, adopted from Boston Diagnostic
Aphasia Examination [31]. The English word “cookie” is translated to Chinese
word “饼干” during our data collection.

Fig. 2. The interface of annotation using the TextGrid format of Praat.

on the interviewer’s collar in order to reduce the influences
on subjects. The audio recordings were stored as 16-bit mono
WAV format with a sampling rate of 16 kHz. The waveforms
were then processed using a high-pass filter to filter out the
low frequency noise below 60Hz.

C. Annotation

Speech samples were manually annotated using the
TextGrid format of praat software [32], as shown in Fig. 2.
The annotations included the transcription, the start and end
time, and the speaker information of each sentence. Dialogues
contained in the audio but not belonging to the picture de-
scription task were not transcribed. Unrecognizable sentences
and non-speech segments such as laughter and cough were
indicated using special tags.

Furthermore, we manually mark all occurrences of word
repetition, word correction and grammatical errors. Filled
pauses, usually indicating hesitation, were considered to be
useful for dementia detection in previous study [11]. However,
it is not so easy to distinguish the filled pause in Chinese.
Therefore, we built a list of modal particles (including “噢”,
“哦”, “啊”, “嗯”, “呃”, “唉”, “哎” in Chinese) and marked
the occurrences of these words as filled pauses.

TABLE II
DESCRIPTIONS OF 16 DURATION FEATURES.

Description Dimension

Total duration 1

Number of utterances 2

Duration of each utterance 2*2=4

Speak duration proportion 2

Silence duration proportion 1

Number of syllable 2

Articulation rate of each utterance 2*2=4

SUM 16

III. FEATURE EXTRACTION

Altogether 113 features of duration, acoustic, and linguistic
categories are extracted from the speech waveforms together
with their annotations to build our models for dementia
detection. The details of them are introduced in this section.

A. Duration Features

Previous studies [17], [19], [20] have found that the de-
mentia patients may have a low speech rate and frequent
hesitations. Therefore, some features related with the durations
of subjects and interviewers are extracted here using the
utterance segmentations given by annotation. This category
contains all together 16 features, as shown in Table II. Their
descriptions are as follows.

• Total duration: The length of time from the start of the
task to the end of the task.

• Duration of each utterance: We calculate the mean and
standard deviation of utterance durations.

• Number of utterances: The total numbers of utterances
spoken by the interviewer and by the participant.

• Number of syllables: The number of syllables in
each utterance is estimated using Praat software
(http://www.fon.hum.uva.nl/praat/) [33]. Then, their mean
and variance are calculated.

• Articulation rate of each utterance (syllables per second):
For each utterance, the number of syllables mentioned
above is divided by the utterance duration. Then, we
calculate their mean and variance.

• Speaking duration proportion: The duration of all utter-
ances for the interviewer or from the participant divided
by the total duration. If a participant has difficulties in this
task, the interviewer’s speech duration would be longer
and the participant’s speech duration would be shorter.

• Silence duration proportion: The duration of all silence
segments divided by the total duration. It may indicate
the hesitation of participant in this task.

B. Acoustic Features

The Geneva Minimalistic Acoustic Parameter Set
(GeMAPS) and its extended version (eGeMAPS) [34],
which can be extracted using the open-source openSMILE
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toolkit [35], have been widely used in speech emotion
recognition and other tasks [36]. In this paper, the eGeMAPS
features are adopted as our acoustic features.

This expert-knowledge-based set contains 88 features which
is small and suited for small datasets. In the process of
extracting acoustic features, we use overlapping windows,
which are shifted forward at a rate of 10ms, to obtain 25
acoustic low level descriptors (LLDs) which cover common
speech signal characteristics such as prosody (energy and F0),
voice quality (jitter and shimmer) and Mel-frequency cepstral
coefficients (MFCCs).

Before extracting acoustic features, we use annotations to
identify and remove the audio segments that interviewer spoke.
For each subject, we obtain an 88-dimensional vector through
calculating the arithmetic mean and the coefficient of variation
of LLDs over time. For the pitch, jitter, shimmer, and all
formant related LLDs, only voiced regions are selected for
calculation. Besides, some other statistical values, such as the
20-th, 50-th, and 80-th percentiles, the range of percentiles
20 – 80 and the mean and standard deviation of the slope of
rising/falling signal parts, are calculated for F0 and loudness
additionally.

C. Linguistic Features

1) Word counts and manually labelled features: Different
form English, Chinese has no explicit word boundaries. Here,
the open-source tool jieba [37] is used for word segmentation.
After word segmentation, we count the number of word uttered
by the interviewer and participants resulting in 2 features.
Furthermore, the occurrences of filled pauses, word repetition,
word correction and grammatical errors are also counted using
the manual annotations described in Section II.

2) Perplexities derived from language models: Our previ-
ous study on the English DementiaBank dataset [38] have
demonstrated that the perplexity features extracted by N-gram
language models can benefit the automatic AD detection from
continuous speech.

N-gram language models [39] have been widely used in
the area of natural language processing. An N-gram model
represents the conditional probability of

P
(
wn|Wn−N+1

n−1

)
= P (wn|wn−N+1, . . . , wn−1) (1)

where {wn−N+1, . . . , wn−1} are N -1 preceding words of
word wn in an utterance. The N-gram probabilities are es-
timated from a training corpus by counting the frequencies of
words or word sequences. When an N-gram model λ is built,
the perplexity value can be calculate to evaluate how likely a
test sequence is generated by this model. A lower perplexity
corresponds to a higher likelihood. For a test word sequence
X = {w1, w2, . . . , wK}, its perplexity is defined as

PPL(λ,X) = P (X|λ)−1/K , (2)

where

P (X|λ) =
K∏

n=1

P
(
wn|W i−N+1

n−1 , λ
)
. (3)

TABLE III
THE SUMMARY OF ALL FEATURES.

Feature category Dimension

Duration 16

Acoustic 88

Linguistic 9

Demographic 4

SUM 117

It is expected that one text should achieve a low perplexity if it
is evaluated by an N-gram language model (LM) trained using
the training data of the same genre. Otherwise, the perplexity
should be high if the training corpus and the test text are from
different genres.

In our case of binary classification between Dementia and
CTRL, the transcriptions of the control samples and the
dementia samples in the training set are used to estimate two
N-gram LMs λC and λD respectively. For a test sample with
transcriptions Xi, a two-dimensional perplexity feature vector
{PPLC , PPLD} is calculated using λC and λD as

PPLC = PPL (λC , Xi) , (4)
PPLD = PPL (λD, Xi) . (5)

Furthermore, we calculate their difference as PPLD−C =
PPLD−PPLC and form a three-dimensional feature vector
{PPLC , PPLM , PPLD−C}. Here, the unigram models of
λC and λD are used according to the results of previous study
[38].

D. Summary of features

The demographic attributes of subjects including age, gen-
der and education are also used as features for dementia de-
tection in our study. Note that one-hot encoding is adopted for
the binary gender. This leads to 4-dimensional demographic
features. Finally, there are 117 features altogether as shown in
Table III.

IV. CLASSIFIER

Logistic regression (LR) is employed to build our classifiers
for distinguishing dementia from control samples. The models
are implemented using the Scikit-Learn toolkit [40]. The ex-
tracted features are standardized before classification assuming
that all numerical features are centered around 0 and have unit
variance. L1 or L2 penalty term is added to reduce the degree
of overfitting and the penalty terms are defined as follows [41]

L1 : ‖w‖1 =
m∑
j=1

|wj | , (6)

L2 : ‖w‖22 =
m∑
j=1

w2
j , (7)

where m is the number of used features and wj is the weight
of the j-th dimension in the logistic regression model.
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TABLE IV
PERFORMANCE OF LR CLASSIFIERS USING FEATURES OF DIFFERENT CATEGORIES.

Category Penalty Set Accuracy Precision Recall F1 score

Duration l1
train 0.7822 0.7540 0.7993 0.7757

test 0.7272 0.6947 0.7478 0.7046

Acoustic l2
train 0.8243 0.8123 0.8323 0.8218

test 0.6451 0.6433 0.6537 0.6294

Linguistic l2
train 0.8083 0.7897 0.8203 0.8045

test 0.7787 0.7577 0.7961 0.7601

Demographic l1
train 0.6906 0.6937 0.6898 0.6913

test 0.6685 0.6644 0.6683 0.6528

All l1
train 0.8502 0.8548 0.8477 0.8509

test 0.8189 0.8187 0.8196 0.8086

V. EXPERIMENTS

A. Experimental Conditions

Considering the imbalanced distribution between Dementia
and CTRL samples in our dataset, a resampling strategy was
adopted in our experiments. The dementia samples was kept all
the time and we randomly selected 84 samples from the CTRL
group. Then, experiments were conducted using the balanced
dataset by 10-fold cross-validation (CV). We repeated the
process of selecting CTRL samples using different random
seeds by 20 times and reported the average results in order to
reduce the fluctuations caused by resampling.

For extracting perplexity features, one practice concern is
that one sample should not be used to train the language
model which calculates the perplexity of itself. In each fold
of CV, all perplexities of test samples were calculate using
the LMs trained on the train set. For the samples in training
set, we used 9-fold nested cross-validation, which meant that
the perplexities of the samples belonging to one fold were
calculated use the LMs trained on the other 8 folds. For
building LR classifiers, the penalty factor C was chosen among
{0.01, 0.1, 1.0, 10, 100} by 4-fold cross validation in the train
set for each fold.

B. Classification Performance

The accuracy, precision, recall and F1-score of the positive
class (Dementia class) were adopted as metrics to evaluate the
performance of built classifiers. The results of classification
using feature of different categories are shown in Table IV.
For each feature category, both penalty types (L1 or L2) were
tried and the one with better overall accuracy is shown in the
table.

It can be observed that the model using linguistic features
obtained the best performance (test set accuracy of 77.9%)
among all models using features of single category. The model
using acoustic features performed even worse than the one
using demographic features. More detailed analysis on the
importance of different feature categories will be introduced in
next subsection. Anyway, we can see that fusing the features

of all categories achieved the best test set accuracy of 81.9%.
This result is comparable with the performance achieved by
previous studies on the datasets of other languages [12]–[15],
[18], [38].

C. Feature Importance Analysis

Here, we analyzed the importance of different features using
the metric of area under curve (AUC), which is defined as the
area under the receiver operating characteristic (ROC) curve
[31]. The value of AUC equals to the probability that when
randomly choosing a pair of positive (dementia) and negative
(healthy control) samples, the positive sample’s feature value
is larger than that of the negative sample. Thus if a feature has
a good discriminating capability, its AUC should be close to
0 or 1. On the contrary, the AUC of a random feature should
be around 0.5.

We first assumed that the feature and the label were posi-
tively correlated and calculated its AUC. If the result was less
than 0.5, which meant the feature and the label were negatively
correlated, we switched the class label of positive or negative
and recalculate the AUC. The AUC values of different features
are listed in Table V. Here, the features whose AUC values
were below 0.6 are not shown. From this table, we can see
that the PPLD−C feature achieved the best discriminating
ability for dementia detection, followed by age, the proportion
of participant’s speaking time, the average length of each
sentence of the interviewer, and the total number of words
spoken by the interviewer. Most of them are from the linguistic
and duration categories.

We also collected the coefficients in the LR model using all
features and averaged them across all folds and all repetitions.
The features with the top-10 largest absolute coefficients are
shown in Table VI. We can see that the coefficient vector
is very sparse due to the L1 regularization. Actually, these
top-10 features accounted for 87.2% of the total absolute
coefficients for all features. Fig. 3 shows the proportions of
the absolute coefficients corresponding to different feature
categories in the LR model using all features. We can see that
linguistic features accounted the largest proportion while the
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TABLE V
AREA UNDER CURVE (AUC) VALUES OF DIFFERENT FEATURES. THE FEATURES WHOSE AUC VALUES WERE BELOW 0.6 ARE NOT SHOWN. THE

INTERVIEWER AND THE SUBJECT ARE DENOTED AS A AND B RESPECTIVELY FOR ABBREVIATION.

Feature description Category AUC Correlation

PPLD−C Linguistic 0.8476 +

Speaking duration proportion of B Duration 0.7538 -

Number of words said by A Linguistic 0.7451 +

Age Demographic 0.7450 +

Number of syllables said by A Duration 0.7247 +

Duration of A’s utterances (mean) Duration 0.7207 +

Total duration Duration 0.7108 +

Duration of B’s utterances (mean) Duration 0.6927 -

Number of utterances said by A Duration 0.6808 +

PPLD Linguistic 0.6791 +

Speaking duration proportion of A Duration 0.6526 +

Education Demographic 0.6430 -

mfcc1 sma3 stddevNorm Acoustic 0.6197 -

Number of B’s filledpauses Linguistic 0.6194 +

Slience duration proportion Duration 0.6164 +

Articulation rate of B’s utterances (mean) Duration 0.6147 -

Articulation rate of A’s utterances (std) Duration 0.6143 -

Duration of B’s utterances (std) Duration 0.6133 -

mfcc1V sma3nz stddevNorm Acoustic 0.6120 -

Number of utterances said by B Duration 0.6063 +

Articulation rate of B’s utterances (std) Duration 0.6062 +

TABLE VI
FEATURES WITH THE LARGEST ABSOLUTE COEFFICIENTS IN THE LR

MODEL USING ALL FEATURES.

Feature description Category Coefficient

PPLD−C Linguistic 0.8285

Age Demographic 0.4384

Speaking duration proportion of B Duration -0.2483

Number of words said by A Linguistic 0.1631

Duration of A’s utterances (mean) Duration 0.1529

Number of grammatical errors made by B Linguistic 0.0350

mfcc1V sma3nz stddevNorm Acoustic -0.0301

shimmerLocaldB sma3nz stddevNorm Acoustic 0.0279

F3bandwidth sma3nz amean Acoustic -0.0271

shimmerLocaldB sma3nz amean Acoustic -0.0161

proportion of acoustic features was the smallest. These results
are consistent with the ones shown in Table IV.

D. Dementia Detection Using Cognitive Test Scores

Cognitive tests, such as MMSE and MoCA-BC, are com-
mon approaches for dementia screening nowadays. These
tests need professional interviewers and are much more time-

Acoustic

12.9%

Demographic 19.9%

Duration

20.5%

Linguistic46.7%

Fig. 3. Coefficient proportions of different feature categories.

consuming than the picture description task. In our experi-
ments, we also built an LR classifier using MMSE and MoCA-
BC scores together with demographic attributes to examine its
performance in comparison with our proposed method. The
results are shown in Table VII. We can see that the test set
accuracy of 91.4% was obtained which was about 10% higher
than our best result in Table IV. To further refine our proposed
method and make its result comparable with the performance
of using cognitive test scores will be the goal of our future
work.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

294



TABLE VII
PERFORMANCE OF THE LR CLASSIFIER (PENALTY=L1) USING MMSE
AND MOCA-BC SCORES TOGETHER WITH DEMOGRAPHIC FEATURES.

Set Accuracy Precision Recall F1 score

train 0.9308 0.8964 0.9629 0.9281

test 0.9137 0.8775 0.9465 0.9037

VI. CONCLUSIONS

This paper first introduces the Mandarin speech dataset we
built for the study on dementia detection from spontaneous
speech. Then, logistic regression classifiers are built using
the speech features of different categories. Finally, the best
test set accuracy of 81.9% is achieved in our experiments
by using all features. Further analysis on the importance of
different features reveals that linguistic features, especially
the perplexity features, play the most important role in our
model. To further increase the size of our dataset, to develop
more sophisticated classifiers for dementia detection, and to
replace manual annotation with automatic speech diarization
and recognition will be the tasks of our future work.
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