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Abstract—This paper proposes an end-to-end emotional speech
synthesis (ESS) method which adopts global style tokens (GSTs)
for semi-supervised training. This model is built based on the
GST-Tacotron framework. The style tokens are defined to present
emotion categories. A cross entropy loss function between token
weights and emotion labels is designed to obtain the interpretabil-
ity of style tokens utilizing the small portion of training data
with emotion labels. Emotion recognition experiments confirm
that this method can achieve one-to-one correspondence between
style tokens and emotion categories effectively. Objective and
subjective evaluation results show that our model outperforms the
conventional Tacotron model for ESS when only 5% of training
data has emotion labels. Its subjective performance is close to
the Tacotron model trained using all emotion labels.

Keywords: emotional speech synthesis, end-to-end, Tacotron,
global style tokens, semi-supervised training

I. INTRODUCTION

The text-to-speech (TTS) methods based on deep learning
techiniques have developed rapidly in the past few years. They
can improve the naturalness of synthetic speech significantly
compared with the traditional approaches. Zen et.al. [1] made
the first attempt of building acoustic models using deep neural
networks (DNNs), which can model the complex dependencies
between linguistic information and acoustic features. With
similar number of parameters, it achieved better naturalness
than hidden Markov model (HMM)-based one. Since it was
difficult to incorporate long time span contextual effects into
DNNs [2], recurrent neural network (RNN)-based methods [3]
were then proposed to better capture temporal information. In
recent years, the audio generative models that can generate
high quality natural-sounding speech [4] and the end-to-end
acoustic models which predicted acoustic features directly
from phoneme or grapheme sequences [5], [6] have also been
proposed and attracted the attention of many researchers.

How to generate speech with expected emotions is also an
important topic in TTS [7]. At the early stage of emotional
speech synthesis (ESS) research, the rule-based methods were
studied which controlled the speech parameters for emotion
expression through manually-defined rules [8], [9]. Although
this approach can control a large number of parameters related
with both voice source and vocal tract [10], the resulting
speech sounded unnatural and the emotion discriminability
was not satisfactory. The unit selection-based methods for
ESS have also been studied. However, obtaining a large-scale

emotional speech corpus for unit selection is usually difficult
and costly. Compared with unit selection, statistical parameter
speech synthesis (SPSS) requires much smaller speech corpus
and is far more flexible. A lot of studies have been made
to build acoustic models for ESS using hidden Markove
models [11], [12] and neural networks [13], [14], [15]. In [13],
emotion-dependent and emotion-independent acoustic models
based on RNNs with long short-term memory (LSTM) units
were investigated. The end-to-end Tacotron model has also
been applied to ESS in [14].

All of the ESS methods mentioned above rely on supervised
training, i.e., all training or adaptation utterances have explicit
emotion labels. This condition is easy to satisfy when the
datasets are built based on the performed emotions of actors.
However, for spontaneous expressive speech, to annotate emo-
tion labels for all utterances is difficult and costly. Therefore,
some unsupervised approaches [16], [17], [18] of expressive
speech synthesis using neural networks have been proposed
recently. Although these methods can learn speech variations
without explicit annotations for expressiveness, the learned
representations or latent embeddings were usually not fully
controllable and had poor interpretability. As mentioned in
[17], one token may capture multiple attributes in speech.
Besides, the attributes that the learned tokens correspond to
can’t be determined at the training stage.

In this paper, we propose a semi-supervised training method
using global style tokens (GSTs) [17] for ESS aiming at
the condition that only a small portion of training data has
emotion labels. This model is built based on the GST-Tacotron
framework. A bank of tokens with the same number as
emotion categories are defined and a cross entropy loss is
introduced between the token weights and the emotion labels
in order to establish a one-to-one correspondence between
tokens and emotions. The model parameters are estimated by
multi-task learning when only the emotion labels of a few
training samples are available. In our experiments, we found
that this method can achieve the interpretability of tokens and
the accurate recognition of emotion labels. When only 5% of
training data had emotion labels, our model achieved similar
subjective performance with the Tacotron-based ESS model
with fully supervised training.
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Fig. 1. The architecture of the encoder using in our baseline Tacotron model.

II. RELATED WORK

A. End-to-end speech synthesis with style tokens

Recently, end-to-end acoustic models with style tokens
for speech synthesis have been proposed [16], [17], [18]. A
Tacotron-based end-to-end speech synthesis architecture that
learnt a latent embedding space of prosody was proposed in
[16]. In this model, a reference encoder was defined to encode
the prosody of reference speech into a fixed-length vector
which contained the information not provided by the text
and speaker identity. The experimental results demonstrated
that this encoder can transfer prosody between utterances in
an almost speaker-independent fashion. An unsupervised style
modeling, control and transfer method was proposed in [17]. It
extended Tacotron by adding a style token layer consisting of
a bank of embeddings named global style tokens in it. The
embeddings were trained without explicit labels, and were
learnt to model the expressiveness-related acoustic variations
in speech.

B. Neural network-based ESS

LSTM-RNN models for ESS were studied in [13]. Two
modeling approaches, emotion-dependent modeling and uni-
fied modeling with emotion codes, were designed. Exper-
imental results showed that both approaches achieved sig-
nificant better naturalness of synthetic speech than HMM-
based emotion-dependent modeling. Emotion control can be
achieved by interpolating or extrapolating the emotion codes in
the unified model. An end-to-end ESS model was introduced
in [14], which focused on modifying Tacotron to get better
alignment. This paper instead studies how to build an end-to-
end ESS model with limited emotion labels using GSTs.

III. METHODS

A. Tacotron-based acoustic model for ESS

This paper builds end-to-end ESS models based on
Tacotron, and refers to an open source implementation1 of
Tacotron 2 [6]. Since our emotional speech corpus is recorded
in Chinese, some modifications are made to the encoder mod-
ule of Tacotron, as shown in Fig. 1. Instead of using Chinese
character sequences directly, phoneme and tone sequences
given by text analysis are adopted as input. Here, phonemes

1https://github.com/Rayhane-mamah/Tacotron-2.
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Fig. 2. The model architecture of GST-Tacotron with semi-supervised training.

are defined as the initials and finals of Chinese, and the tone
of each phoneme is defined as the tone of the syllable in
which current phoneme is located. Besides, in order to get
better break and rhythm performance, a feature which indicates
the position of each phoneme in current sentence is added.
Therefore, for each phoneme, its representation is made up by
concatenating a phone embedding, a tone embedding and a
position embedding.

In order to build our Tacotron-based baseline models for
ESS, we implement two approaches of emotional modeling,
i.e., emotion-dependent (ED) modeling which trains a model
for each emotion separately and emotion-independent (EI)
modeling that trains a unified model for all emotions. In the
EI model, an emotion embedding vector is added to the output
of text encoder as shown in Fig. 1.

B. GST-Tacotron with semi-supervised training for ESS

This paper proposes a semi-supervised training method for
Tacotron-based ESS. This method adopts almost the same
model structure as GST-Tacotron, including an emotion token
layer and a Chinese Tacotron sequence-to-sequence module,
as shown in Fig. 2. The emotion token layer converts log-mel
spectrogram into a fixed-length emotion embedding by two
steps. First, a reference encoder is utilized to compress the
input log-mel spectrogram into a fixed-length vector. Then,
the vector is passed to the emotion token layer as the query
vector for attention and to calculate a set of weights which
measure its similarity to each token. The weighted sum of
tokens forms the emotion embedding which is added to the
encoder output for every time step as shown in Fig. 1.

As introduced above, conventional GST-Tacotron models
lack interpretability of the learnt tokens. In order to guarantee
that each learned token corresponds to one emotion in our
method, several modifications are made to the conventional
GST-Tacotron model. First, single-head attention is used in-
stead of multi-head attention in the emotion token layer
to achieve a single-vector representation of token weights.
Second, the number of tokens is set to be consistent with the
number of emotion categories in the corpus. Finally, one-hot
emotion labels are introduced into the emotion token layer as
the target of token weights. A cross entropy loss between the
emotion labels and the token weights is added into the loss
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TABLE I
DETAILS OF THE CORPUS USED IN OUR EXPERIMENTS.

emotion train test
duration (min.) # of utt. duration (min.) # of utt.

neutral 84.68 759 3.20 30
happy 62.86 926 2.02 30

sad 87.33 882 3.02 30
angry 23.71 370 2.07 30
total 258.57 2937 10.30 120

function of the GST-Tacotron model as follows,

loss =
∑
s

L(c, ĉ) +
∑
s′

CE(e, ê), (1)

where c and ĉ denote the targets and predictions of an utterance
in the training set, e and ê represent the emotion label vector
and the token weight vector of a training utterance respectively,
L(·) and CE(·) are Tacotron loss and cross entropy loss
functions, s denotes the complete training set and s′ denotes
the part of training utterances with emotion labels.

At the synthesis stage, the emotion embedding is first de-
termined by selecting the emotion token corresponding to the
expected emotion. Then, the embedding vector is added to the
output of text encoder at each time step for following attention-
based decoding. For both the baseline method describe in
Section III-A and our proposed method, a WaveNet vocoder
[19] conditioned on mel-spectrogram is trained to reconstruct
waveform samples from the output of Tacotron.

IV. EXPERIMENTS

A. Experimental conditions

A high-quality emotional speech corpus recorded in a
professional studio was used in our experiments. The 3057
Chinese sentences of four emotions (neutral, happy, sad and
angry) were uttered by a female speaker. The recordings
were about 4.48 hours with 16kHz sampling rate and 16bits
quantization. The details of the corpus are shown in Table I.

Based on the speech corpus above, four types of models
were constructed for comparison.
• ED Four emotion-dependent Tacotron models using all

emotion labels as introduced in Section III-A.
• EI An emotion-independent Tacotron model using emo-

tion embeddings and all emotion labels as introduced
in Section III-A. This model served as the upper-bound
model for evaluating our proposed semi-supervised train-
ing method.

• Semi-EI Same as EI, but only using the emotion labels
of a part of training utterances. For the utterances without
emotion labels, a zero emotion embedding vector is used.
This model served as the baseline model for evaluating
our proposed semi-supervised training method.

• Semi-GST A GST-Tacotron model using the semi-
supervised training method introduced in Section III-B.

The output acoustic features of all models were 80-
dimensional mel-spectrogram. The dimensions of phone em-
bedding, tone embedding and position embedding were 384,

TABLE II
OBJECTIVE EVALUATION RESULTS OF ED AND EI MODELS.

Model Emotion MCD(dB) F0RMSE(Hz) V/UV(%) FFE(%)

ED

neutral 2.75 57.54 7.94 20.00
happy 2.65 73.87 9.06 25.14

sad 2.61 53.99 6.95 17.24
angry 2.69 77.88 10.90 28.68

EI

neutral 2.66 58.19 7.20 20.19
happy 2.63 74.59 8.53 26.30

sad 2.54 51.47 6.82 15.48
angry 2.61 76.94 10.34 27.31

64 and 64 respectively. The settings of Tacotron models
and the emotion token layer in Semi-GST followed previous
studies [6], [17]. The WaveNet neural vocoder had 24 dilated
casual convolution layers which were divided into 4 convolu-
tion blocks. Each block contained 6 layers and their dilation
coefficients were {1,2,4,8,16,32}. The output distribution for
each waveform sample was single Gaussian. When building
the ED models, it was difficult to get Tacotron models which
can generate normal alignment between phoneme and acoustic
feature sequences since the training data of a single emotion
was limited. Therefore, a pre-training and adaptation strategy
was utilized. First, a unified Tacotron model was estimated
with 1000 epochs using all training data without emotion
labels. Then, the data of each emotion was utilized to fine-tune
the model with 100 epochs to get corresponding ED model.
All the EI, Semi-EI and Semi-GST models were trained with
1000 epochs.

B. Comparison between ED and EI models

Objective evaluations were conducted to compare the per-
formance of ED and EI models, which both followed the
supervised training framework. The evaluation metrics were
the average distortions of acoustic feature prediction, including
mel-cepstrum distortions (MCD), root mean square error of
F0 (F0RMSE), voiced/unvoiced decision error (V/UV) and F0

frame error (FFE) [20], on the test set of each emotion. The
FASTDTW [21] algorithm was adopted to align the predicted
acoustic feature sequences towards the natural ones. Then, the
distortions between them were calculated frame-by-frame.

The results are shown in Table II. From the table, we can see
that in both ED and EI models, “neutral” and “sad” emotions
obtained better results than “happy” and “angry” emotions on
almost all metrics. It can be explained from two aspects. First,
the later two emotions had higher and more variational F0
contours which were more difficult for modeling. Second, the
“angry” emotion had much less training data as shown in Table
I. Comparing ED and EI models, it can be observed that the EI
model achieved slightly better results than ED for all emotions.
This can be attributed to the advantage of unified modeling and
data sharing.

C. Objective evaluation on our proposed method

First, we conducted an emotion recognition experiment to
verify the interpretability of the tokens learned by the Semi-
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TABLE III
CONFUSION MATRICES OF EMOTION RECOGNITION USING THE SEMI-GST
MODELS TRAINED WITH DIFFERENT PROPORTIONS OF EMOTION LABELS.

HERE, w̄ STANDS FOR THE AVERAGE TOKEN WEIGHT OF THE TRUE
EMOTION.

(a) 2% emotion labels

true label recognized label
neutral happy sad angry w̄

neutral 26 0 4 0 0.8554
happy 2 21 7 0 0.7387

sad 4 5 21 0 0.6553
angry 2 8 20 0 0.0336

(b) 5% emotion labels

true label recognized label
neutral happy sad angry w̄

neutral 29 1 0 0 0.9598
happy 0 30 0 0 0.9927

sad 0 1 29 0 0.9507
angry 0 0 0 30 1.0000

(c) 10% emotion labels

true label recognized label
neutral happy sad angry w̄

neutral 30 0 0 0 0.9890
happy 0 30 0 0 0.9999

sad 0 1 29 0 0.9667
angry 0 0 0 30 1.0000

(d) 20% emotion labels

true label recognized label
neutral happy sad angry w̄

neutral 30 0 0 0 1.0000
happy 0 30 0 0 1.0000

sad 0 0 30 0 0.9993
angry 0 0 0 30 1.0000

GST model. Four Semi-GST models were trained which uti-
lized 2%, 5%, 10% and 20% emotion labels in the training set
respectively. In this experiment, we fed the 120 test utterances
(30 per emotion) in the test set into the emotion token layer
and got 120 token weight vectors. For each vector, the index
of its maximum value was treated as the emotion recognition
result of this utterance. Table III shows the confusion matrices
of emotion recognition. The w̄ value in Table III denotes
the weight of the token corresponding to the true emotion
and averaged across the 30 test utterances. We expect that
all w̄ values are close to 1 which indicates a one-to-one
correspondence between the learnt tokens and the emotion
categories.

From Table III, we can see that there were plenty of
recognition errors when only 2% emotion labels were utilized.
When increasing the proportion of available emotion labels
to 5%, the confusion matrix appeared in a clear diagonal
form and the w̄ values became very close to 1. Further, there
were no classification errors when using 20% emotion labels.
These results reflect that the Semi-GST model can achieve
the emotion-related interpretability of tokens with only 5%
emotion labels.

Then, an experiment was conducted to compare the per-
formance of EI, Semi-EI and Semi-GST models. In this
experiment, 5% emotion labels were used for both Semi-EI

TABLE IV
OBJECTIVE EVALUATION RESULTS OF EI, SEMI-EI AND SEMI-GST

MODELS.

Model MCD(dB) F0RMSE(Hz) V/UV(%) FFE(%)

EI 2.61 63.77 7.98 21.66
Semi-EI 2.71 68.95 8.97 24.93

Semi-GST 2.64 64.04 8.26 21.81

TABLE V
AVERAGE PREFERENCE SCORES(%) AMONG EI, SEMI-EI

AND SEMI-GST MODELS ON NATURALNESS OF SYNTHETIC
SPEECH, WHERE N/P STANDS FOR “NO PREFERENCE” AND p
DENOTES THE p-VALUE OF A t-TEST BETWEEN TWO MODELS.

Semi-GST EI Semi-EI N/P p

66.25 - 18.33 15.42 2.30× 10−34

35.00 38.96 - 26.04 0.31

and Semi-GST models. The metrics were the same as the ones
used in Table II and the results averaged across all emotions
are shown in Table IV. We can see that Semi-GST performed
better than Semi-EI on all metrics. The performance of the
Semi-GST model was very close to that of the EI model
although it only utilized 5% emotion labels.

D. Subjective evaluation on our proposed method

To subjectively evaluate the performance of our proposed
method on the naturalness and emotion expressiveness of syn-
thetic speech2, two groups of ABX preference tests and three
emotion classification tests were conducted by 12 subjects. In
both subjective tests, ten sentences were selected randomly for
each emotion from the synthesized test set.

In ABX preference tests, the subjects were asked to give one
of the three choices, (1) A is more natural, (2) no preference,
(3) B is more natural, for each pair of synthetic speech played
in random order. In addition to the average preference scores,
the p-value of t-test was used to measure the significance of
the difference between two models in each test. The results
are shown in Table V. We can see that Semi-GST significantly
outperformed Semi-EI (p < 0.01) and there was no significant
difference between Semi-GST and EI (p = 0.31).

In emotion classification tests, the synthetic utterances of all
emotions were played in random order. Each subject was asked
to choose the emotion they perceived for each utterance. They
were also allowed to chose the “other” option if they didn’t
think the utterance belonged to any of the the four emotions.
The results are shown in Table VI. First, we can see that all
these three models achieved the best accuracy for the “sad”
emotion and the worst accuracy for the “angry” emotion. This
is consistent with the objective evaluation results shown in
Table II. Further, both EI and Semi-GST models performed
better than the Semi-EI model. The average classification
accuracies of the three models were 91.46% (EI), 86.25%
(Semi-EI), and 91.88%(Semi-GST) respectively, which shows

2The audio samples can be found at http://home.ustc.edu.cn/∼wpf0610/
APSIPA2019.html
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TABLE VI
THE PERCENTAGES OF PERCEIVED EMOTIONS FOR SPEECH SYNTHESIZED

USING DIFFERENT MODELS.

(a) EI

true label perceived label
neutral happy sad angry other

neutral 91.67 5.00 0 0.83 2.50
happy 12.50 85.00 0 0 2.50

sad 0 0 100.00 0 0
angry 5.83 2.50 0 89.17 2.50

(b) Semi-EI

true label perceived label
neutral happy sad angry other

neutral 87.50 9.17 0.83 0.83 1.67
happy 5.83 91.67 0 0 2.50

sad 1.67 0 96.67 0.83 0.83
angry 9.17 15.00 0.83 69.17 5.83

(c) Semi-GST

true label perceived label
neutral happy sad angry other

neutral 92.50 2.50 1.67 0.83 2.50
happy 4.17 94.17 0 0 1.67

sad 0 0 100.00 0 0
angry 8.33 5.83 0.83 80.83 4.17

that the Semi-GST model can express emotions as effectively
as the EI model.

V. CONCLUSIONS

This paper have presented an end-to-end emotional speech
synthesis method using style tokens and semi-supervised train-
ing. The model is implemented based on the GST-Tacotron
framework. A cross-entropy loss function was introduced to
achieve the emotion-related interpretability of style tokens and
the semi-supervised training using a small portion of emotion
labels in the training data. Experimental results confirmed the
effectiveness of our proposed method. Objective and subjective
evaluation results demonstrated that our model outperformed
the conventional Tacotron model for emotional speech syn-
thesis when only 5% of training data has emotion labels.
The naturalness and emotion expressiveness of our proposed
method using 5% emotion labels were close to the Tacotron
model using all emotion labels. To apply our proposed method
to spontaneous emotional and expressive speech will be a task
of our future work.
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