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Abstract— In this study, an approach to speaker identification 

is proposed based on a convolutional neural network (CNN)-

based model considering sequential speaker embedding and 

transfer learning. First, a CNN-based universal background 

model (UBM) is constructed and a transfer learning mechanism 

is applied to obtain speaker embedding using a small amount of 

enrollment data. Second, considering the temporal variation of 

acoustic features in an utterance of a speaker, this study 

generates sequential speaker embedding to capture temporal 

characteristics of speech features of a speaker. Experiments were 

conducted on the King-ASR series database for UBM training, 

and the LibriSpeech corpus was adopted for evaluation. The 

experimental results showed that the proposed method using 

sequential speaker embedding and transfer learning achieved an 

equal error rate (EER) of 6.89% outperforming the method 

based on x-vector and PLDA method (8.25%). Furthermore, we 

considered the effect of speaker number for speaker 

identification. When the number of enrolled speakers was from 

50 to 1172, the identification accuracy of the proposed method 

was degraded from 82.99% to 73.26%, which outperformed the 

identification accuracy of the method using x-vector and PLDA 

which was dramatically degraded from 83.17% to 60.95%. 

I. INTRODUCTION 

Transfer learning has been used extensively to improve the 

reliability of features extraction [1] and provides the task 

extensibility [2], especially for acoustic model construction in 

automatic speech recognition (ASR) [3-4]. Speaker 

identification (SI) task is to identify the speaker from an 

utterance of a speaker by comparing the voice biometrics of 

the utterance with those speaker voice models stored 

beforehand. Speaker identification category can be divided 

into two subcategories: text-dependent and text-independent. 

In text-dependent SI, the speaker must utter the same phrases 

or words that are previously used for training while in text-

independent SI, there is no constraint on the phrase or words. 

In this paper, we focused on text-independent speaker 

identification task. 

In the past ten years, most SI methods were based on 

Gaussian mixture model-universal background model (GMM-

UBM) [5-9]. Recently, deep neural network (DNN) 

architecture for speaker recognition has become more and 

more popular [10-13]. The DNN-UBM can improve the 

representation ability of speaker features using the deep 

structure. As embedding has been widely applied for 

presenting the recognizable features on deep learning [14], 

most of the DNN-based methods used speaker embedding to 

compare with the embedding features of the speakers for 

recognition using probabilistic linear discriminant analysis 

(PLDA) backend [15]. As the embedding was obtained from 

the UBM trained from many speakers, the transfer learning 

mechanism [16] was applied to extract the embedding of a 

new speaker to increase the precision for speaker modeling. 

On the other hand, Vincent et al. [17] and Huang et al. [18] 

indicated that the acoustic mismatches between training and 

testing data would cause performance degradation. The 

mismatch also occurred in the development and enrollment 

phases. The feature projection mechanism may not ensure that 

the characteristics of the enrolled speaker could be ideally 

projected to the space of the trained speakers. The time delay 

neural network (TDNN) [19] considered the temporal 

structure of acoustic events and outperformed traditional 

DNN-based methods [20]. The x-vector-based systems based 

on TDNN structure has verified that the embedding 

representation was superior for short speech segments [21-22]. 

In this paper, we use sequential embedding to capture the 

temporal characteristics in an utterance of a speaker. 

In summary, this paper integrates the transfer learning 

mechanism which uses a small amount of enrollment data and 

the sequential embedding by extracting the temporal variation 

of acoustic features in an utterance of a speaker for text-

independent speaker identification. With the transfer learning 

and sequential embedding features, the proposed method 

achieves a better performance compared to the traditional 

methods for speaker identification. 

II. RELATED WORK 

Speaker identification consists of three phases: 

development, enrollment and evaluation. The development 

phase is the universal background model (UBM) training that 

uses a large amount of data to define the speaker manifold. 

The enrollment phase is that the new speaker is enrolled by 

specific information of the speaker to construct a speaker-

dependent model. The evaluation phase uses the enrolled 

speaker models to decide who the speaker of the test utterance 

is. Motivated by the powerful feature extraction capability of 
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Fig. 1   The sequential embedding DNN architecture for speaker identification. 

DNNs, the DNN-based background model is used to directly 

model the speaker space. The d-vector-based SI system, in 

which the d-vector is created by averaging the last hidden 

layer outputs of the UBM, has become one of the most 

popular approaches in the adoption of DNN to speaker 

verification [10]. 

In addition to feature extraction, transfer learning technique 

has been efficiently used in task learning [23], image 

generation [24], speech recognition [25] and speaker 

verification [26]. The main concept of transfer learning is to 

share experience information from source domain to target 

domain. In speaker identification research, Jia et al. [2] used 

the embedding which was obtained by speaker identification 

model to synthesize speech. Their experimental results 

showed that the system significantly lowered the requirements 

for multi-speaker text-to-speech training data by separating 

the training of the speaker encoder and the synthesizer. 

Transfer learning is critical to achieve these results [2]. Zhang 

et al. [26] utilized transfer learning to solve the domain 

mismatched problem for speaker identification. The 

experimental results showed that better initial performance, 

faster speed of convergence, and better final performance 

were achieved for the neural network-based speaker 

verification framework with transfer leaning [26]. 

III. SEQUENTIAL SPEAKER EMBEDDING FOR SPEAKER 

IDENTIFICATION 

A. Overview 

The proposed speaker identification system is a two-stage 

DNN architecture, as depicted in Fig. 1. The first stage is 

UBM training for speaker feature extraction. The method is 

inspired by [27] which proposes a background model for 

adaptive feature learning. In this study, we consider 

spectrogram information to construct a CNN architecture to 

extract the generic speaker features. As the specific enrolled 

speakers are different from the speakers utilized to train the 

universal background model, the speaker features used to 

train the UBM could be transferred to the enrolled speakers. 

Next, the second stage is to train a DNN model to capture the 

temporal variation of speaker features over time. Finally, a 

dense layer with softmax produces the final likelihood for 

each speaker. 

B. Spectral Feature Extraction 

This study uses the 40-dimensional Mel-frequency energy 

coefficients (MFECs) [27] for each sliding window and 

obtains the spectral features of 100 frames per second as the 

input features of the UBM. The spectral features are extracted 

from a 25ms window with a stride of 10ms to obtain a 

sequence of spectral features. In addition, this study applies 

the voice activity detection (VAD) technique to detect the 

silence interval for silence removal. Silence removal is 

helpful to reduce the speaker identification error resulting 

from non-speech segments. 

C. Universal Background Model 

In this study, the CNN-based UBM consists of five 

convolution layers, two maximum pooling layers and a dense 
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with softmax output layer.  The size for each layer is 

illustrated in Table I. In addition, batch normalization, 

nonlinearity unit, and Parametric Rectified Linear Unit 

(PReLU) are applied to each convolutional output. The batch 

normalization is able to increase the efficiency of model 

convergence in the training step. PReLU proposed by He et al. 

[28] is the rectified activations in the convolutional network 

and is evaluated as better than ReLU in large scale image 

classification tasks. 

In this study, we first set the spectrogram of size 100×40 as 

the input which represents the one-second spectral features. It 

is expected that one-second signal is enough to catch the 

characteristics of a phone from the speaker’s utterance. Next, 

each input spectrogram is turned into an output vector that 

belongs to all training speaker’s probabilities through layer 

transmission, abstraction and weighted sum. The whole 

architecture is a speaker classifier for the trained speakers. As 

the well-trained UBM is used for further speaker feature 

extraction, we need a large amount of data to train this model 

to cover all phonetic features. 

In training parameter setting, the cost function utilizes the 

cross entropy for error estimation. The weights of the 

convolution layers and dense layer is initialized by normal 

distribution with zero-mean and a standard deviation of 0.1, 

and L2 regularization is used for weight decay. 

TABLE I 

THE CNN-BASED UBM ARCHITECTURE 

Layer Input size Kernel size Stride Output size 

Conv. 1 [100×40] 
[1×5]×16 

[9×1]×32 

[1×1] 

[2×1] 

[100×36]×16 

[46×36]×32 

Pool 1 [46×36]×32 [2×2] [2×2] [23×18]×32 

Conv. 2 [23×18]×32 
[1×5]×32 
[8×1]×64 

[1×1] 
[1×1] 

[23×14]×32 
[16×14]×64 

Pool 2 [16×14]×64 [2×2] [2×2] [8×7]×64 

Conv. 3 [8×7]×64 
[1×3]×128 

[6×1]×128 

[1×1] 

[1×1] 

[8×5]×128 

[3×5]×128 

Conv. 4 [3×5]×128 
[1×3]×256 

[3×1]×512 

[1×1] 

[1×1] 

[3×3]×256 

[1×3]×512 

Conv. 5 [1×3]×512 [1×3]×1024 [1×1] [1×1]×1024 

Softmax [1×1]×1024 - - 500 

 

D. Speaker Embedding 

After UBM training is completed, we remove the final 

dense layer and utilize the last convolutional output as the 

speaker embedding which represents a speaker’s feature, 

similar to the d-vector. However, if there are many speakers 

enrolled in the speaker recognition system, the d-vector, 

which is the average of the last hidden layer outputs of the 

UBM, would face the problem of low discriminability. 

Different from d-vector which uses similarity comparison to 

make final decision, in this study, a sequence of speaker 

embedding features of the utterance is fed to a DNN-based 

classifier adopting transfer learning for speaker identification. 

E. Sequential Embedding Classifier 

Since the UBM is trained using the utterances of the 

speakers different from the enrolled speakers, speaker 

embedding representation using d-vector obtained by 

averaging the last hidden layer outputs of the UBM is unable 

to completely characterize the input speaker. In this study, we 

consider the sequential embedding representation from 

sequential signals to consider the temporal variation in the 

acoustic characteristics of an utterance produced by a speaker. 

The DNN-based classifier is used to extract the temporal 

relationship in sequential speaker embedding. Here, the length 

of input speech utterance is one second. The embedding is 

extracted and stacked into a 2-dimensional matrix along time 

axis. The interval between every two adjacent segments is 0.1 

second. Finally, the input is a 10×1024 feature matrix. Then 

we produce the 1024-dimensional feature through the dense 

layer for dimensionality reduction. Equation (1) represents the 

element of 1024-dimmensional embedding from the outputs 

of the dense layer. 
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where kh  is the k-th element obtained from the dense layer 

outputs, ubm
sh  is the s-th element of the sequential embedding   

obtained from the UBM, L is the number of elements in an 

embedding and N is the number of embeddings. 

After that, the dense layer with softmax function produces 

the result of speakers’ probabilities for speaker identification 

determination. 
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where the speaker probability ),...,,|( 21 iniie xxxspkp  is 

obtained by giving a sequential spectrogram at time i. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Databases 

This study used two datasets, King-ASR-044 and 

LibriSpeech corpus, to train and evaluate the proposed 

method. King-ASR-044 [29] is a Taiwanese speech 

recognition database collected from mobile devices. This 

database contains the voices of 5,232 different speakers 

(2,365 males and 2,867 females) who are evenly distributed in 

age (16-30, 31-45, and >45), gender and regional accents. 

Each speaker was recorded in a quiet or noisy environment. 

This study used 500 speakers of the King-ASR-044 for UBM 

training. LibriSpeech corpus is an English speech database 

that is derived from read audiobooks. In this study, the 

LibriSpeech corpus was used for evaluating the performance 

of the proposed model. 

In the first step, 500 randomly selected speakers were used 

for training the UBM. The training data contained 15,396 

recordings. Then in the second step, clean signals of 460 

hours from 1172 speakers in the LibriSpeech corpus were 

used for enrollment and evaluation. 10 recordings from each 

of the 1172 speakers was selected randomly from the database 
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to enroll and train the speaker classifier, and two recordings 

selected randomly from each of the 1172 speakers were used 

to evaluate speaker identification performance. As mentioned 

above, this study used the unscripted voice samples to 

perform in every step, especially the enrollment phase. This 

will be close to the use in real environment. 

B. Experimental Setup 

The database was labeled with speaker identity and the 

silence interval was removed using the energy-based VAD. 

After that, all speech signals of the same speaker were 

concatenated as a single signal. The short-time Fourier 

transform was applied to extract the magnitude in frequency 

domain. The total lengths of the development, enrollment and 

evaluation signals were 13.13 hours, 32.45 hours and 5.33 

hours, respectively. The average lengths of the enrollment and 

evaluation signals per speaker were about 100 seconds and 17 

seconds. The spectrogram of the speech signal for one second 

was extracted and a shift of 0.1 second was applied to obtain a 

sequence of speech spectrograms as the experimental data. 

The 10 embedding features was combined to form a 

sequential embedding data. The total number of enrollment 

data was 1,168,358 and the total number of evaluation data 

was 192,000. 

The study was implemented by TensorFlow. We set the 

training epochs to 100 with a mini-batch size of 128 and used 

the stochastic gradient descent algorithm to update the 

weights of the network. The learning rate was 0.05 with a 

decay factor of 0.94 which declined the learning rate per five 

epochs. Finally, an embedding dimensionality of 1024 was 

used for speaker identification. 

C. Performance Evaluation 

In this study, we aimed to use the transfer learning 

mechanism to improve the performance of speaker 

identification with a small-sized enrollment dataset. The 

methods using x-vector [21] was considered as the baseline 

system. The x-vector embedding was obtained from the same 

model in [21] with the 100 frame-level outputs for computing 

its mean and standard deviation, and the embeddings were 

extracted at layer segment7 (last hidden layer). The next two 

systems were transfer learning methods with different models 

for comparison. The DNN-based embedding model utilized 

the UBM to obtain speaker features, then used those speaker 

features directly to train a speaker classifier. The DNN-based 

sequential embedding model considered the temporal 

variation of speaker features by employing the ability of 

feature abstraction of DNN model to capture the speaker 

information. We evaluated the accuracy of those models 

based on equal error rate (EER). 

In Table II, the experimental results showed that the 

sequential embedding DNN outperformed the embedding 

DNN and the baseline systems. The performance of using 

DNN-based classifier was better than the x-vector and PLDA 

method. Moreover, extracting the feature variation in the 

duration of one second could further improve the precision of 

identification. The detection error tradeoff (DET) curves were 

also used to evaluate the performance of x-vector, embedding 

DNN and sequential embedding DNN systems, as shown in 

Fig. 2. A DET graph is a graphical plot of error rates for 

classification systems, plotting the miss probability vs. false 

alarm probability. The results showed that the proposed 

sequential embedding DNN system outperformed either x-

vector (cosine distance), x-vector (PLDA) or embedding DNN 

systems. 

TABLE II 

ACCURACY (%) AND EER (%) COMPARISON ON 1172 ENROLLED SPEAKERS 

Method Accuracy (%) EER (%) 

x-vector (cosine distance) 52.73 11.18 

x-vector (PLDA) 60.95 8.25 

Embedding DNN 66.82 7.95 

Sequential embedding DNN 73.26 6.89 

 

 

Fig. 2   DET curves comparison on 1172 enrolled speakers. 
 

Table III shows the comparison results of the baseline 

systems and the proposed system on 50 enrolled speakers. Fig. 

3 illustrated the DET curves for comparison on 50 enrolled 

speakers. It was a well-known fact that as the number of 

enrolled speakers was increased, the identification 

performance was likely to decrease. In this experiment, as the 

enrolled speakers increased from 50 to 1172, the 

identification accuracy of the sequential embedding DNN was 

only degraded from 82.99% to 73.26%, while the 

identification accuracy of the x-vector and PLDA system was 

dramatically degraded from 83.17% to 60.95%. Obviously, 

the proposed method outperformed the baseline systems when 

the number of speakers increased. 

TABLE III 
ACCURACY (%) AND EER (%) COMPARISON ON 50 ENROLLED SPEAKERS 

Method Accuracy (%) EER (%) 

x-vector (cosine distance) 80.54 11.41 

x-vector (PLDA) 83.17 5.58 

Embedding DNN 79.91 7.04 

Sequential embedding DNN 82.99 5.35 
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Fig. 3   DET curves comparison on 50 enrolled speakers. 
 

V. CONCLUSIONS 

In this paper, we integrated transfer learning with 

sequential embedding for speaker identification. The 

traditional similarity comparison method was replaced by the 

DNN classifier trained by the enrolled speakers’ recordings. 

The experiments used the King-ASR series database to train 

the UBM and adopted the LibriSpeech corpus to evaluate 

model performance. The experimental results showed that the 

EER of sequential embedding DNN was 6.89% 

outperforming the method using x-vector and PLDA which 

achieved 8.25% EER. Then we considered the effect of 

different numbers of speakers and got the result that the 

sequential embedding DNN system achieved the best EER. In 

the further work, we will explore the influence of another 

mismatch issue such as environment mismatch. 
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