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Abstract—Social networks have become prevalent in our daily
life: people learn, discuss, and spread different kinds of informa-
tion through social networks every day. While bringing a lot of
convenience, the prevalence of social networks creates the security
challenge. The information released and/or spread by malicious
nodes can be wrong, misleading or even virus, which may lead to
bad influences and severe consequences. Therefore, understand-
ing the information diffusion process and the hazard impact of
malicious nodes’ behaviors to the information diffusion is critical.
In this paper, we utilize the evolutionary game theory to measure
the hazard influence of malicious nodes to the information
diffusion over social networks, by investigating the information
diffusion dynamics and evolutionary stable strategies. Finally,
simulations are conducted to validate the theoretic analysis and
illustrate the impact of the malicious nodes.

I. INTRODUCTION

With the popularization of network, information dissemi-
nation over Internet becomes easy and flexible with low cost
and high speed. Nevertheless, it creates the security challenge
at the same time. Especially over social network, when the
information is wrong or misleading, people are apt to be
misguided and then may be the disseminator. Furthermore,
if the content of information is detrimental, virus for instance,
it could incur severe consequences and incalculable damages.
Therefore, it is of crucial importance to model information
diffusion process over social networks with malicious nodes, to
figure out how information sent by malicious nodes propagates
among social networks, and to estimate the impact to the
whole network.

Frameworks to model the information diffusion can be gen-
erally divided into two categories. The first category focuses on
macro exploration, usually adopting machine learning or data
mining techniques to predict the dynamics or properties of
network. Based on historical information given by early mea-
sures, [1]–[6] investigated the characterization of the dynamics
of information propagation in social media applications. Hao
et al. proposed a matrix factorization based predictive model
and used gradient descent to optimize objective function [7].
The authors in [8] studied diffusion of preference on social
networks by a rank-learning based data-driven approach. The
second category models the information diffusion from the
microscopic aspect, i.e., emphasizing more on the decisions
and motivation of individuals. Based on the correlation, Lee
et al. in [9] proposed a probabilistic model to estimate the
probability of a user’s adoption using the naive Bayes classi-

Fig. 1. An illustration of the social network with type I nodes, type II nodes,
and malicious nodes.

fier. The authors in [10]–[12] proposed information diffusion
models to study the spreading by defining different objective
functions for each user and then solving the corresponding
minimization or maximization problem.

Evolutionary game theory (EGT) has also been utilized to
study the information diffusion, which provides an alternative
mechanism to understand the microscopic interactions among
nodes. The authors in [13]–[16] proposed an evolutionary
game theoretic framework to model the dynamic information
diffusion process among nodes in social networks. However
none of these pay attention to social networks with malicious
users, whose behaviors are very different from rational nodes.
In this paper, we propose to utilize graphical EGT to analyze
the hazard impact of malicious nodes to the information
diffusion over social networks. We divide the rational nodes
into two types: type I nodes which are directly connected to the
malicious nodes and type II nodes which are not, and analyze
them respectively, to derive the evolution dynamics and the
corresponding evolutionary stable strategies (ESSs). Finally,
simulation results are conducted to validate the theoretic
analysis and show that the existence of malicious nodes can
increase the proportion of rational nodes adopting the strategy
of forwarding information.

II. EVOLUTIONARY GAME FORMULATION

Generally, a social network can be modeled as a graph,
where users are represented as nodes and connections are
represented as edges. As shown in Fig.1, in our information
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diffusion model, a social network graph consists of (M +N)
rational nodes, who adopt a specific strategy updating rule, and
fmax malicious nodes, who use a fixed malicious strategy.
We assume that rational nodes update their strategies in
accordance to the DB updating rule: a random player is chosen
to abandon his/her current strategy (Death process), then the
chosen player adopts one of his/her neighbors’ strategies
with the probability being proportional to their fitness (Birth
process). Other updating rules such as birth-death (BD) and
imitation (IM) can be analyzed similarly [17]. The objectives
of rational nodes are to maximize their fitness, while malicious
nodes are different from rational ones, which are often paid
to spread harmful information.

Due to the existence of malicious nodes, rational nodes
could be further categorized into two types: M type I nodes
which are directed connected to the malicious nodes, and N
type II nodes which are not directly connected to the malicious
nodes. We assume that each rational node has k rational
neighbors, whose distribution is λ(k), i.e., when randomly
choosing one rational node, the probability of the chosen
node with k rational neighbors is λ(k). Notice that for type I
rational nodes, apart from k rational neighbors, there are extra
f malicious nodes as neighbors with probability distribution
μ(f). In other words, every type I rational node has (k + f)
neighbors while type II rational node only has k neighbors.

In this paper, we assume that when a user receives one
piece of information, he/she only has two choices: forwarding
denoted as Sf , and not forwarding as Sn. For a rational user,
he/she chooses the strategy based on the DB updating rule,
while for a malicious user, he could only adopt Sf mimicking
the scenarios that hackers deliberately spread computer virus
or some people are employed to spread misleading informa-
tion. In our daily life, when we are first exposed to some new
information, we generally cannot distinguish the reputation
of the disseminators over social network, and thus always
treat them equally. In such a case, no matter which type the
rational user is, the payoff matrix is the same since there is no
information about whether the neighbor is malicious or which
type the neighbor is. Then payoff matrix can be written as
follows

Sf Sn

Sf

Sn

(
uff ufn

unf unn

)
(1)

where uff , ufn, unn denotes the payoffs for two nodes when
they both adopt Sf , one adopts Sf while the other adopts Sn,
and they both adopt Sn, respectively. Apparently, ufn = unf ,
i.e., the payoff matrix is symmetric. In graphical evolutionary
game theory [18], [19], the player strategy update rule directly
depends on the fitness of the players, i.e.:

π = (1− α)B + αU (2)

where B is the baseline fitness, and U is the payoff which
consists of uij defined before. α is the selection strength
satisfying 0 < α < 1 and controlling the proportion of current
payoff to the whole fitness.

Fig. 2. System model: an illustration of how malicious nodes influence the
evolution dynamics and ESS.

In the literature [14]–[16], α is assumed to be very small,
representing the limit of weak selection. We would also adopt
this assumption in remaining part.

To evaluate the hazard of malicious nodes on the whole
network, we define pf the percentage of rational nodes with
Sf among all rational nodes, and pfi the proportion of type i
(I or II) nodes adopting Sf among all type i nodes. We call
pf , pf1, pf2 as population state. Correspondingly, ṗf , ˙pf1, ˙pf2
are population dynamics. Since rational nodes’ neighbors
are different, we analyze type I nodes and type II nodes
respectively in the following.

III. THEORETIC ANALYSIS

In this section, we study the evolutionary dynamics and ESS
to figure out the effects of malicious users. The procedures of
the theoretic analysis are shown in Fig. 2.

A. Evolutionary Dynamics of Type I Nodes

According to (2), the fitness for the type I node could be
derived as

πf1 = 1− α+ α [kfuff + (k + f − kf )ufn] , (3)

and

πn1 = 1− α+ α [kfufn + (k + f − kf )unn] , (4)

where kf is the number of nodes with strategy Sf among all
neighbors, πf1 and πn1 are the fitness of nodes adopting Sf

and Sn, respectively.
With the DB strategy updating rule, when a node is ran-

domly chosen to change the current strategy, he/she adopts
one of his neighbors’ strategies with probability proportional
to the fitness of that strategy. The probabilities transited to
strategy Sf and strategy Sn are denoted as Pto f1 and Pto n1,
respectively, and can be derived as

Pto f1 =
kfπf1

kfπf1 + (k + f − kf )πn1
, (5)

and
Pto n1 =

(k + f − kf )πn1

kfπf1 + (k + f − kf )πn1
. (6)
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In each round, one of (M + N) nodes would be selected
to update randomly. The probability of the chosen node
being type I node with Sf is pf1M/(M + N) and the
probability of the chosen node being type I node with Sn

is (1− pf1)M/(M +N). When the selected node is a type I
node adopting Sf , it may deviate from Sf to Sn, which leads
to the percentage of users adopting Sf among type I nodes,
also known as pf1, decreasing by 1/M with probability

Prob

(
Δpf1 = − 1

M

)
=

M

M +N
pf1Pto n1. (7)

On the contrary, when the selected one is type I node
adopting Sn, the population state pf1 would increase by 1/M
if the center node changes his strategy from Sn to Sf with
probability

Prob

(
Δpf1 =

1

M

)
=

M

M +N
(1− pf1)Pto f1. (8)

Then combining two scenarios above, the evolutionary
dynamics of the proportion of type I nodes adopting strategy
Sf can be derived as follows

ṗf1 = E
[
Prob

(
Δpf1 = − 1

M

)(
− 1

M

)
+

Prob

(
Δpf1 =

1

M

)
1

M

]

=
1

M +N
E
[

kf
k + f

− pf1 + α·

−Φk3f + (Φ− Φn)(k + f)k2f + (k + f)2Φnkf

(k + f)2

]
,

(9)

where Φ = uff − 2ufn + unn and Φn = ufn − unn.
During the simplification in (9), we use Maclaurin series

a+bα
c+dα = a

c +
bc−ad

c2 α+O(α) to transfer fraction to polynomial,
which facilitates the computation of expectation. Because α is
a very small value due to weak selection, the higher order term
O(α) can be omitted in (9).

In each round, the center node is randomly selected and their
neighbors’ strategies are not correlative. Therefore, to connect
kf with pf1 and fully understand the dynamics of type I nodes,
we model the strategies of rational neighbors as a Bernoulli
sequence. We regard the probability of encountering a rational
neighbor adopting Sf as pf under the assumption that the

network is large enough. It should be emphasized that pf
here is the proportion among rational nodes, without counting
malicious nodes whose strategies are always Sf . However,
when one of center node’s neighbors is adopting Sf , it can
be either rational node or malicious node. In such a case, the
probability for one of type I node’s neighbors adopting Sf

is ptotal f =
Mf+Nf+fmax

M+N+fmax
≈ pf + fmax

M+N+fmax
, where Mf

and Nf are the number of nodes adopting Sf among type I
nodes and type II nodes, respectively. The approximation is
reasonable under the assumption that fmax is small compared
with M + N , i.e., the number of malicious nodes is smaller
than the number of rational nodes.

Among all of the center node’s neighbors, there are kf nodes
with Sf and (k+ f − kf ) nodes with Sn, and the probability
of such a configuration is

θ(k, kf ) =

(
k
kf

)(
pf +

fmax

M +N + fmax

)kf

(
1− pf − fmax

M +N + fmax

)k+f−kf

. (10)

With (10), the moments of kf can be obtained as follows

E(kf )=k

(
pf+

fmax

M+N+fmax

)
,

E(k2f )=(k2−k)

(
pf+

fmax

M+N+fmax

)2
+k

(
pf+

fmax

M+N+fmax

)
,

E(k3f )=k(k−1)(k−2)

(
pf+

fmax

M+N+fmax

)3

+

3k(k−1)

(
pf+

fmax

M+N+fmax

)2
+k

(
pf+

fmax

M+N+fmax

)
.

(11)

Combining (9) with (11), the evolution dynamics of type I
nodes could be derived as (14). From (14), we observe that
ṗf1 depends on both pf1 and pf , which means that nodes are
affected not only by those with the same type, but also all
other nodes including malicious nodes.

B. Evolutionary Dynamics of Type II Nodes

For type II nodes, the difference from type I nodes is that
they are not directly connected with malicious nodes, which
means that the number of neighbors of type II nodes is k rather
than (k + f). In such a case, the fitness can be written as

πf2 = 1− α+ α [kfuff + (k − kf )ufn] , (15)

ṗf1 =
∑
k

fmax∑
f=0

{
f(1− pf1) + k(ptotal f − pf1)

(M +N)(k + f)
+

αk(1− ptotal f )

(M +N)(k + f)2[
(k − 1)(k − 2)Φp2total f + [(2f + 1)(k − 1)Φ + (k + f)(k − 1)Φn]ptotal f + f2Φ+ f(k + f)Φn

]}
μ(f)λ(k). (14)

ṗf2 =
∑
k

{
ptotal f − pf2

M +N
+

α(k − 1)ptotal f (1− ptotal f )

(M +N)k
[(k − 2)Φptotal f +Φ+ kΦn]

}
λ(k). (19)
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(a) The proportion of type I nodes adopting Sf .

0 0.5 1 1.5 2 2.5 3
Time slot 105

0.3

0.4

0.5

0.6

0.7

p f2

type 2 simulation without malicious nodes
type 2 theory without malicious nodes
type 2 simulation with 5 malicious nodes
type 2 theory with 5 malicious nodes
type 2 simulation with 10 malicious nodes
type 2 theory with 10 malicious nodes

(b) The proportion of type II nodes adopting Sf .
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(c) The proportion of all rational nodes adopting Sf .

Fig. 3. Simulation results of the evolution dynamics under the payoff matrix PM1: uff = 0.3, ufn = 0.8, unn = 0.2

and
πn2 = 1− α+ α [kfufn + (k − kf )unn] . (16)

Similarly, the probabilities transited to strategy Sf and
strategy Sn are denoted as Pto f2 and Pto n2, respectively,
and can be derived as

Pto f2 =
kfπf2

kfπf2 + (k − kf )πn2
, (17)

and
Pto n2 =

(k − kf )πn2

kfπf2 + (k − kf )πn2
. (18)

According to [16], the evolution dynamics of the proportion
of type II nodes with Sf , i.e., ṗf2, can be written as (19). We
can observe that due to the absence of malicious nodes, the
dynamics would be more precise, which simplifies the solution
to ESS as shown in the next subsection.

C. ESS Analysis

To obtain the evolution dynamics of pf , we combine (14)
and (19) with weights proportional to the number of type I
nodes and II nodes as follows

ṗf=
M

M +N
ṗf1 +

N

M +N
ṗf2

=
∑
k

λ(k)

(M +N)2
(1− ptotalf )(ap

2
totalf

+ bptotalf + c)

=
∑
k

λ(k)

(M +N)2

(
1−pf− fmax

M +N + fmax

)
×

[
ap2f+

(
2afmax

M+N+fmax
+b

)
pf+a

(
fmax

M+N+fmax

)2
+

bfmax

M+N+fmax
+c

]
,

(20)

where

a=α(k−1)(k−2)

⎛
⎝fmax∑

f=0

kMμ(f)Φ

(k + f)2
+
NΦ

k

⎞
⎠ ,

b=α(k−1)

⎡
⎣fmax∑
f=0

μ(f)kM

k+f

(
(2f+1)Φ

k+f
+Φn

)
+
NΦ

k
+NΦn

⎤
⎦,

c=

fmax∑
f=0

Mμ(f)

k + f

(
αkf2

k + f
Φ+αkfΦn+f

)
. (21)

Note that the a, b, c in (21) are coefficients of the quadratic
equation in (20). From (20), we could find that by setting
ṗf = 0, there are three possible ESSs, i.e., p∗f = 1 −

fmax

M+N+fmax
and two roots to the quadratic equation ap∗2f +(

2afmax

M+N+fmax
+ b

)
p∗f+a

(
fmax

M+N+fmax

)2

+ bfmax

M+N+fmax
+c =

0, which both lie between 0 and 1.
Compared with the results in [16] that ESS would be 0

under the condition unn > ufn, in (20) none of the three
ESSs is equal to zero. This is because although not forwarding
the information may be beneficial to nodes, the existence of
malicious nodes with Sf would largely influence some rational
nodes to deviate from current strategy to Sf . In other words,
with malicious nodes in social network, the proportion of
rational nodes adopting Sf increases. The more malicious
nodes in the network, the larger pf would be at the ESS,
which we can observe from the roots of the quadric equation
in (20). It should also be noted that when there is no malicious
node in the social network, i.e., there is no type I node, the
results would reduce back to those in [16], for fmax = 0,
c = 0 and μ(0) = 1.

IV. SIMULATION RESULTS

In this section, we conduct simulations to validate the
proposed evolutionary game theoretic model, and evaluate the
hazard of malicious users to the whole social network. Without
loss of generality, we first consider a uniform network with
degree k = 25. The malicious neighbors of type I nodes are
assumed to be evenly distributed, i.e., μ(f) = 1/fmax, 1 ≤
f ≤ fmax.

We first evaluate the performance under different number
of malicious nodes, and the results are shown in Fig. 3.
Specifically, we generate 1500 rational nodes with 500 type
I nodes and 1000 type II nodes, and initialize each of them
with a random strategy: 30% with Sf and 70% with Sn. The
weak selection parameter α is set to be 0.025. The payoff
matrix is set as PM1 : uff = 0.3, ufn = 0.8, unn = 0.2.
The evolutionary states of pf1, pf2 and pf , i.e., the proportion
of nodes adopting Sf among type I nodes, the proportion of
nodes adopting Sf among type II nodes, and the proportion
of nodes adopting Sf among type I and type II nodes, under
the scenarios fmax = 0, fmax = 5 and fmax = 10, are
shown in Fig.3(a), 3(b) and 3(c). We can see that the theoretic
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Fig. 4. The comparison with different M under three different payoff
matrices.
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Fig. 5. The comparison with different weak selection parameter α.

results fit well with the simulation results, about 0.75% relative
error with 5 malicious users and 0.54% relative error with 10
malicious users.

From Fig.3, we can also observe that as the number of
malicious nodes increases from 0 to 10, the proportion of
rational nodes adopting Sf increases for both type I nodes
and type II nodes. For instance, in Fig.3(c), compared with
the baseline, i.e. the black curve, the ESS of pf increases by
17% with 5 malicious users and by 28.3% with 10 malicious
users. Comparing Fig.3(a), (b) and (c), we observe that the
proportion of type I nodes adopting Sf is the higher than
that of type II nodes. This is because under malicious users’
direct influence, type I nodes are apt to adopt Sf . Affected by
type I nodes, though not directly connected to those malicious
nodes, some type II nodes tend to deviate from their current
strategies to Sf . Hence, the ESS of all rational nodes is largely
enhanced compared with the baseline. It should be noted that
the baselines in Fig.3(a), (b) and (c) are same, because without
malicious nodes, there is no difference between type I nodes
and type II nodes.

Next, we evaluate the impact of the proportion of type
I nodes among all rational nodes to the ESS of pf with
different payoff matrices, and the results are shown in Fig.4.
In this simulation, we assume that there are 5 malicious
nodes in the network. The total number of rational nodes
remains constant as 1500, while the number of type I nodes
M changes from 200 to 800. From Fig.4, we can see that
for all payoff matrices, the ESS increases as M increases.
Specifically, when the proportion of type I nodes increases
10%, the ESS increases about 0.041 under PM1, 0.034 under
PM2 and 0.025 under PM3, respectively. This phenomenon
shows that more connected links between malicious nodes and
rational nodes will improve the information diffusion.

In Fig.5, we evaluate the effect of the weak selection
parameter α on pf by fixing the payoff matrix as PM1 and
the number of malicious users as 10. The implication of α is
the relative contribution of the interaction between nodes to
fitness. Thus, a bigger α means that at each round of strategy
update, surrounding environment becomes more important to
the fitness. We consider three cases: α = 0.02, α = 0.025 and

α = 0.03. In Fig. 5, it can be observed that as α increases,
the ESS would decrease, which can be analyzed from (20)
and (21). From this result, one can learn that in practice, it
is better to maintain vigilance towards received information,
i.e., maintain a relatively large α. In this way, the pf would
decrease, reducing the diffusion of detrimental information or
computer virus.

V. CONCLUSION

In this paper, we employ graphical EGT to investigate the
hazard of malicious nodes in information diffusion over social
networks. Due to the existence of malicious nodes, we divide
rational nodes into two types: type I nodes which are directly
connected to the malicious nodes and type II nodes which are
not directly connected to the malicious nodes. Based on EGT,
we theoretically analyze the evolutionary dynamics and ESS
for type I nodes and type II nodes, respectively. Theoretic
derivations and simulation results show that the existence
of malicious nodes can increase the proportion of rational
nodes adopting the strategy of forwarding information. The
more the number of malicious nodes, the larger the ESS
of the proportion of rational nodes adopting the strategy of
forwarding information. Also, the influence of the malicious
nodes to the type I nodes is larger than that to the type II
nodes due to the direct connection of the type I nodes.
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