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Abstract—In this paper, we consider the use of the phase spec-
trum in speech signal analysis. In particular, a phase-based voice
activity detection (VAD) by using the derivative of instantaneous
frequency is proposed. Preliminary experiments reveal that the
distribution of this feature can indicate the presence or absence
of speech. The performance of the proposed method is evaluated
in comparison with the conventional amplitude-based method.
In addition, we consider a combination of the amplitude-based
and phase-based methods in a simple manner to demonstrate
the complementarity of both spectra. The experimental results
confirm that the phase information can be used to detect voice
activity with at least 62% accuracy. The proposed method shows
better performance compared to the conventional amplitude-
based method in the case when a speech signal was corrupted
by white noise at low signal-to-noise ratio (SNR). A combination
of two methods achieves even higher performance than each of
them separately, in limited conditions.

I. INTRODUCTION

Speech processing in time-frequency domain has handled
amplitude spectrum much more thoroughly than the phase
spectrum. Previous studies argued that the most important
information could be obtained from the amplitude spectrum,
while very little information could be obtained from the
phase spectrum. Wang and Lim [1] concluded from their
experiments that a more accurate estimation of phase is
unwarranted in speech enhancement. Vary [2] also showed
that for the SNR above 6 dB, there is no degradation in the
synthesized speech that could be perceived if the noisy phase
is used as the estimation of clean phase spectrum. However,
phase information is gaining more and more attention from
the researchers. Paliwal et al. demonstrated the usefulness
of the phase spectrum in speech signal processing [3] and
human speech perception [4]. Gerkmann et al. [5] presented
the review of phase processing for single-channel speech
enhancement. Mowlaee et al. [6] reported the advances in
phase-aware signal processing in speech communication. And
recently, other studies demonstrated the importance of the
phase in speech signal processing such as source separation
[7]–[9], speech synthesis [10]–[12], and speech enhancement
[13]–[17].

The phase spectrum itself contains valuable information
about the structure of the signal, but it is hidden due to
the phase wrapping issue, which causes a fuzzy pattern in
the phase spectrogram as shown in Fig. 1(b). To extract this
information, some other representations of the phase spectrum
have been proposed. One of the most important representations

Fig. 1. (a) Amplitude spectrogram, (b) phase spectrogram, (c) instantaneous
frequency, and (d) derivative of instantaneous frequency with respect to
frequency in logarithmic scale.

is instantaneous frequency (IF) [18], shown in Fig. 1(c). The
IF is derived from the phase spectrum by taking the derivative
of the phase with respect to the time. By doing so, we can
reduce the effect of the wrapping issue, thereby revealing the
harmonic structure of the speech signal, as illustrated in Fig.
1(a). In speech signal processing, the IF can be used to detect
the presence of vowels or to extract the harmonic frequencies,
which is a very useful characteristic. To improve visualization,
we use the derivative of the IF with respect to frequency (DIF).
Fig. 1(d) shows the DIF spectrogram in a logarithmic scale.
We can see that the structure of the speech signal is shown
more clearly.

Previous works show the usefulness of the IF in such aspects
of speech signal processing as speaker identification [19],
source separation [20], and formant detection [21]. Respond-
ing to the success of recent phase-aware studies, we propose a
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phase-based voice activity detection. VAD detects the presence
or absence of human speech and plays an important role
in speech processing, especially in speech coding [22] and
speech recognition [23]. The conventional VAD algorithms
[24]–[26] mostly use the amplitude information to recognize
the presence or absence of speech. In our research, we use
the phase information, specifically, the difference between the
statistic distribution of the DIF in voiced/unvoiced segments
to estimate voice activity.

The remainder of this paper is organized as follows. In
Section II, we formulate and analyze the phase information
in short-time Fourier transform (STFT) domain. In Section
III, we describe the proposed phase-based VAD algorithm.
Section IV reports the experiments and results. Finally, Section
V concludes the paper.

II. FORMULATION AND ANALYSIS OF PHASE FEATURES

A. Notation

Let t, ω, and T be the time index, frequency index, and
frame length, respectively. The STFT of a continuous-time
speech signal x(t) is defined as:

X(ω, t) =

∫ T

0

x(t+ τ)w(τ)e−jωτdτ, (1)

where w(τ) is the window function and j is the imaginary unit.
Let ∠ denote the angle operator, then the phase spectrum at
time t is denoted as ∠ [X(ω, t)]. The discrete time version of
(1) for signal x(n) can be given as follows:

X(k, l) =
N−1∑
n=0

w(n)x(n+ lH)e−j2πkn/N , (2)

where l = 0, · · · , L − 1 is the frame index, and k, H , and
N are the frequency bin index, hop size, and window length,
respectively.

B. Analysis of derivative of instantaneous frequency

One of the most important phase-based features is IF, which
is defined as a derivative of the phase with respect to time:

φ(ω, t) =
∂∠[X(ω, t)]

∂t
. (3)

For discrete time signal processing, Kay [27] proposed a
method to avoid the phase unwrapping problem for calculating
the IF:

φ(k, l) = ∠[X(k, l + 1)X∗(k, l)], (4)

where X∗ is the complex conjugate of X . The time derivative
can extract the temporal fluctuations of the phase information,
especially when the signal moves from an unvoiced segment
to a voiced segment and vice versa. Beyond those cases,
the speech signal moves slowly comparing to the frame rate;
therefore, the IF also changes slowly in the same frequency
band. At the unvoiced segments, e.g., from the beginning to
0.3 second in Fig. 1, the IF depends linearly on the frequencies
of the STFT, and the IF spectrum increases regularly along the
frequency axis. However, due to the phase wrapping issue, the
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Fig. 2. Comparison between estimated probability densities of DIF in (a)
unvoiced segment and (b) voiced segment.

IF values can only increase from −π to π, then drop to −π,
and then continue to increase, repeatedly. This phenomenon
causes horizontal stripes on the IF spectrogram. At the voiced
segments, especially for the vowels, e.g., from 0.6 second to
0.8 second in Fig. 1, the signal has a harmonic structure, so the
IF at positions near harmonic components will be affected by
them. Along the frequency axis, the IF no longer increases
steadily but is divided into many bands, where each band
contains several STFT frequencies and where the center is the
harmonic frequency. The width of each band is proportional
to the width of the corresponding harmonic component in the
amplitude spectrogram. In each harmonic band, the values of
the IF are approximately the same and depend on the value
of the dominant harmonic frequency.

To improve visualization, we define the DIF as the derivative
of the IF with respect to frequency:

ψ(k, l) = φ(k + 1, l)− φ(k, l). (5)

As mentioned before, at the unvoiced segments, the IF spec-
trum increases regularly along the frequency; therefore, its
frequency derivative is approximately a constant. We can see
that the DIF spectrogram depicted in Fig. 1(d) has the same
color at the unvoiced segments; however, there are still some
thin horizontal lines due to the influence of the wrapping
phenomenon. At the voiced segments, the IF in each harmonic
band has the same value, hence the derivative of it is close to
zero.

To clearly see the difference between the two segments,
frequency bands larger than the cutoff frequency bin kc are
eliminated, because we can see from Fig. 1(d) that the DIFs
at low frequencies contain much more information than at
high frequencies. We analyze the DIFs at low frequencies
by using their distributions. Fig. 2 illustrates the estimated
distribution of the low-frequency DIF in voiced and unvoiced
segments at five frames. We can clearly see the difference
between the two segments: the DIF distribution concentrates
near zero in the voiced segments, while it spreads out in
the unvoiced segments. The difference between these two
distributions expressed in their shapes and statistic measures
such as variance, points at the presence or absence of speech
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in the signal. In the next section, we propose a VAD method
based on this difference.

III. VAD BASED ON THE DIFFERENCE OF DIF
DISTRIBUTIONS

We propose a new VAD algorithm using the phase-based
feature discussed in the previous section. We assume that the
first small segment of the signal is unvoiced and estimate
its distribution as a reference. To identify the segment of
the signal as voiced or unvoiced, we compare it with the
reference segment by calculating the distance between their
distributions. If the two distributions have similar shapes, i.e.,
if the distance is small, the segment is unvoiced; otherwise, it
is voiced.

The details of the algorithm are described as follows. After
calculating the DIF, we eliminate all frequency bands larger
than the cutoff frequency kc:

ψ(l) = {ψ(0, l), ψ(1, l), · · · , ψ(kc, l)}, (6)

where ψ(l) is the DIF spectrum at frame l after removing
high frequencies. The distribution p(Ψl) at frame l is esti-
mated by the histogram of the DIF spectrogram of segment
Ψl = {ψ(l), · · · ,ψ(l + NH − 1)}, where NH is the size
of the segment. The unvoiced reference distribution p(Ψref)
is calculated as an average of the distributions of the first
NR frames, i.e., Ψref = {ψ(0), · · · ,ψ(NR − 1)}. Next, we
use the Euclidean distance to calculate the distances from all
distributions to the reference distribution, i.e., the Euclidean
distance between the histograms L

(
p(Ψl), p(Ψref)

)
. Then, the

threshold η, determined in the experiment, is used to make
decisions. If the distance is larger than the threshold, the frame
is treated as voiced; otherwise, it is unvoiced. The binary mask
Ml is generated from the distance vector and the threshold,
where 1 corresponds to speech presence and 0 corresponds to
speech absence. Finally, the mask is smoothed by eliminating
the small-sized voiced/unvoiced segments (about 10 ms). The
pseudo-code of this algorithm is given in Algorithm 1.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup

The experimentation involves parameter tuning and ac-
curacy testing. In the first experiment, we determine the
threshold for the phase-based VAD algorithm by performing
the algorithm with varying thresholds and then choosing the
best one. The second experiment compares the performance
of the proposed algorithm with the amplitude-based VAD
algorithm. We also combine both methods (i.e., combine the
binary masks) using the AND and OR operators and then
compare all the results to investigate the relationships between
the phase and the amplitude spectra. For the amplitude-based
method, we use Sohn’s algorithm [24], which is implemented
as a function in MATLAB voicebox library [28].

To evaluate the results, we use precision, recall, F-measure,
and accuracy [29]. Precision is defined as the ratio of correct
voiced decisions to the total voiced samples of the estimated
mask, while recall is the ratio of correct voiced decisions to

Algorithm 1 Phase-based VAD algorithm
Require: Speech signal x(n)
Ensure: VAD binary mask Ml

X(k, l) = STFT[x(n)]
φ(k, l) = ∠[X(k, l + 1)X∗(k, l)]
ψ(k, l) = φ(k + 1, l)− φ(k, l)
ψ(l) = {ψ(0, l), · · · , ψ(kc, l)}
Ψl = {ψ(l), · · · ,ψ(l +NH − 1)}
Ψref = {ψ(0), · · · ,ψ(NR − 1)}
estimate distributions p(Ψl) and p(Ψref)
if L

(
p(Ψl), p(Ψref)

)
> η then

Ml = 1
else
Ml = 0

end if
return Ml after hang-over

the total voiced samples of the reference mask. The F-measure
can be derived from precision and recall:

F-measure =
2

1/precision + 1/recall
. (7)

The F-measure considers both precision and recall. The higher
the F-measure, the better the result. The ideal value of the F-
measure is 1, corresponding to the perfect precision and recall.
Accuracy is defined as the ratio of the correct decisions to the
total length of the speech signal. In the first experiment, the
F-measure is used to determine the thresholding parameter.
Then in the second experiment, the performance of the VAD
algorithm using that parameter is evaluated by accuracy.

The tests are performed on the Japanese newspaper article
sentences (JNAS) database [30], containing speech recordings
of the Japanese-speakers reading excerpts from the Mainichi
Newspaper. The sampling frequency is 16 kHz. The sound
samples are impaired by adding white noise, babble noise, and
traffic noise with varying SNR of 5 dB, 15 dB, and 25 dB. The
reference decisions for the clean speech materials are made by
labeling manually as in Fig. 4(a). In our implementation, the
Hann window is used with 32 ms duration and 4 ms frame
shift, and the number of FFT points is 4,096 with zero padding.
We also choose the segment size NH of five frames and the
cutoff frequency kc of 2 kHz. We assume that the first 100
ms segment is unvoiced, corresponding to NR is 25 frames.

B. Threshold tuning

Distance threshold, which is used for making decisions, is
one of the most important parameters in the phase-based VAD
algorithm. In this experiment, we perform the algorithm on
100 clean sound samples from JNAS database with varying
thresholds, compute the average precision, recall, and F-
measure for each threshold, and finally choose the threshold
with the highest F-measure.

Fig. 3(a) depicts the precision and recall curve, showing the
trade-off characteristics of precision and recall. Fig. 3(b) shows
the value of the F-measure for varying thresholds. We can see
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TABLE I
ACCURACY OF VAD ALGORITHMS FOR VARIOUS ENVIRONMENTAL CONDITIONS

Noise type SNR (dB)
Accuracy (%)

Phase-based Amplitude-based
Combine phase and amplitude

AND OR

White noise

5 74.83 72.28 65.99 81.12

15 83.40 89.01 82.03 90.37

25 87.04 94.68 88.87 92.85

Babble noise

5 62.04 81.25 63.29 80.00

15 78.74 85.73 81.72 82.76

25 84.54 87.87 88.89 83.51

Traffic noise

5 69.13 81.99 76.80 74.32

15 75.22 84.05 84.17 75.10

25 76.49 87.20 88.06 75.63
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Fig. 3. Evaluation results of threshold tuning for phase-based VAD method:
(a) precision and recall curve and (b) F-measure according to threshold.

that the best threshold for the phase-based VAD algorithm is
0.03, corresponding to the highest F-measure of 0.9294.

C. Evaluation of proposed method

In this section, we compare the accuracies of the proposed
phase-based method, the amplitude-based method [24], and the
combination method. We perform the algorithms on 200 sound
samples from JNAS database. White noise, babble noise, and
traffic noise are added to these signals with varying SNR.

The results of the experiment are summarized in Table
I. In most testing conditions, the amplitude-based algorithm
performs better than the phase-based algorithm. However, in
the case of white noise at SNR of 5 dB, the phase-based
algorithm yields better results. For the babble noise and the
traffic noise at low SNR, the phase-based method gives the
worst results. These observations can be interpreted by the
characteristics of the DIF. The phase contains the information
about the frequency of the signal; therefore, it is sensitive to
periodic noises like babble noise (containing human voice) or
traffic noise (containing vehicle horn sound), while white noise
is a random signal having equal intensity for all frequencies
which does not affect the phase much. We can also see from
Table I that the method combining the phase-based algorithm

Fig. 4. Example of improved VAD algorithm using combination method with
white noise added to the speech signal at 5 dB SNR: (a) clean speech signal
with manual mask; (b) phase-based VAD algorithm; (c) amplitude-based VAD
algorithm; (d) combination using AND operator, and (e) combination using
OR operator.

and the amplitude-based algorithm using OR operator can
improve the performance of the VAD algorithm for speech
signals corrupted by white noise at SNR of 5 dB and 15
dB thanks to the aforementioned characteristic of DIF. Fig.
4 illustrates an example of the improvement. As shown in (b),
the phase-based method estimates voice activity at the end
of the second utterance and last two utterances, which are
not detected by (c) the amplitude-based method. In contrast,
the amplitude-based VAD can point at some voiced segments,
which cannot be indicated by the phase-based algorithm.
Consequently, combining two methods with the OR operator
can yield better results. The combination method with AND
operator can also increase the accuracy for babble noise at
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SNR of 25 dB and for traffic noise at SNR of 15 dB and
25 dB, but the improvement is not significant. Overall, we
can see that the algorithm using only phase information can
detect voice activity with 62% accuracy at the least, and the
phase information can complement the amplitude information.

V. CONCLUSIONS

We investigated the use of the phase spectrum in speech
processing and proposed a new phase-based VAD algorithm
using the derivative of the instantaneous frequency. We com-
pared the performance of the proposed phase-based method
with the conventional amplitude-based method in various noisy
environments. Experimental results showed that voice activity
can be estimated by using only the phase information. While
the amplitude-based algorithm showed better accuracy in most
cases, the phase-based algorithm yielded better results in the
case of white noise at low SNR. We also demonstrated the
possibility of combining the phase and amplitude information
for better speech signal analysis.

In our future work, we will try to improve the performance
of the phase-based VAD algorithm by using other distances.
We will also research more effective methods for combining
the phase and the amplitude information.
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