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Abstract— This paper evaluates the performance of semi-

coprime microphone arrays (SCPMAs) for speech source 

direction of arrival (DOA) estimation based on the steered 

response power – phase transform (SRP-PHAT) algorithm.  The 

SCPMA is an extension of the coprime microphone array 

(CPMA), which combines the outputs of three sub-arrays to 

reduce the impact of spatial aliasing and achieves performance 

comparable to that obtained from arrays using much larger 

numbers of microphones.  The proposed approach considers two 

different processors to calculate the outputs from the sub-arrays 

and adapts the SRP-PHAT approach to these arrays.  Simulations 

are conducted under anechoic and reverberant scenarios in a 

noisy room.  Beam pattern and array gain results indicate that the 

SCPMA works better than the conventional CPMA at reducing 

the peak side lobe (PSL) level and total side lobe area while 

increasing the capability of amplifying the desired target signal 

and restraining noise from all other directions for typical 

frequencies of speeches.  DOA Estimation results also show that 

the SCPMA achieves accurate DOA estimates in anechoic and low 

reverberant conditions, which is comparable to the equivalent full 

ULA, while the large side lobes in the beam pattern of the SCPMA 

lead to less accurate results in the highly reverberant environment. 

I. INTRODUCTION 

Microphone array geometries and related signal processing 

algorithms have been investigated for a few decades to solve 

problems in the acoustics context, including estimating the 

number of sound sources, direction of arrival (DOA) 

estimation and enhancing the intelligibility of humans’ 

speeches.  Compared with methods applied to conventional 

antenna arrays, microphone arrays require broadband 

processing, and the performance across a wide band of 

frequencies need to be evaluated [1], [2]. 

At present, the most commonly used geometries of 

microphone arrays are the uniform linear array (ULA) and 

uniform circular array (UCA), while more and more 

sophisticated microphone arrangements are used to better 

analyze the acoustic scenes or capture the sound field such as 

ad hoc microphone arrays, B-format microphones and 

spherical microphone arrays [3], [4], [5].  For broadband 

recording, one of the most crucial issues is spatial aliasing, 

which occurs when the inter-element spacing of a uniform 

microphone array is larger than half of the wavelength of 

recorded signal according to the spatial Nyquist theorem.  The 

spatial aliasing results in grating lobes in the beam pattern and 

causes ambiguity in differentiating the desired source with 

sources propagating from the directions of the grating lobes.  

Coprime arrays (CPA) are proved to present capabilities to 

cancel the grating lobe, while having narrower main lobe and 

smaller side lobe than the beam pattern of a ULA with same 

number of elements [6]. The coprime microphone array 

(CPMA) uses this sensor structure and interleaves two uniform 

linear sub-arrays, which has been applied to speech sources to 

estimate the DOA [7], [8].  The accuracy is improved, but there 

are also larger side lobes in the coprime beam pattern, which is 

a potential problem of the CPMA.  Additionally, these previous 

work do not consider the effects of noise to DOA estimation, 

which is a normal issue in the real world.  To decrease the peak 

side lobe (PSL) level and side lobe area in the beam pattern, a 

new type of sensor array is proposed in [9], which is the semi-

coprime array (SCA).  The SCA introduces an extra sub-array 

compared with the CPA, resulting in the interleaving of three 

sub-arrays.  This array geometry has been shown to possess 

strength in having smaller side lobes in the beam pattern than 

that of a CPA with same number of elements, leading to better 

DOA estimation results.  However, the application of SCA in 

acoustics and the DOA estimation of broadband signals are not 

discussed.  Besides, the proposed structure of SCA uses a min 

processor, proposed in [10], to merge the sub-array outputs, 

while other processors can also be applied.  

This paper investigates the semi-coprime microphone array 

(SCPMA) and its application in DOA estimation of speech 

sources.  Two most popular processors are applied to the 

SCPMA and CPMA, which are the product processor and min 

processor, to explore probabilities in further canceling the side 

lobe in beam pattern while increasing the array gain.  In 

addition, adaption of the conventional SRP-PHAT algorithm 

used for estimating the DOA is proposed to match the 

characteristics of the processors.  The performance is evaluated 

through simulations under different levels of noise and 

reverberation.    

The following chapters are organized as follows.  Section II 

briefly reviews the CPMA and then generalizes the array 

geometry of SCPMA, followed by formulating the signal 

model of recording.  Common workflow of the processors used 

for sub-array processing and performance measures of 

microphone arrays are also introduced.  In Section III, 

equations for adapting SRP-PHAT to the processors are 

derived, which are then applied to a histogram-based DOA 

estimation method.  Simulation results for different testing 

scenarios are shown and discussed in Section IV with 

conclusions provided in Section V.   
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Fig. 1 Generalized geometry of coprime microphone arrays 

 
Fig. 2 Generalized structure of semi-coprime microphone arrays 

II. COPRIME AND SEMI-COPRIME MICROPHONE ARRAYS 

AND THEIR PROCESSORS  

A. Mathematical Model  

A conventional CPMA is formed by interleaving two 

uniform linear sub-arrays, with the number of microphones of 

both being coprime numbers, and the geometry is illustrated in 

Fig. 1 [8].  Two coefficients are involved in the CPMA, which 

are the numbers of microphones of the two sub-arrays, M and 

N.  The inter-microphone spacing of the two sub-arrays is also 

coprime, with the M-element sub-array being Nd and the other 

being Md.  The two sub-arrays share the first microphone so 

that the aperture of both is the same, leading to an overall array 

with M + N – 1 microphones.  To express the microphone 

numbers of the CPMA differently from that of the SCPMA, the 

following sections denote the M and N as 𝑀𝑐  and 𝑁𝑐 , 

respectively.   

A SCPMA is a sparse array that interleaves three uniform 

linear sub-arrays, and the array structure is determined by 

setting four parameters, M, N, P and Q, as shown in Fig. 2.  The 

M  and N are a pair of coprime numbers, where the only 

positive common divisor is one.  The number of microphones 

of the first two interleaved ULAs are PM and PN, with the 

inter-element spacing being QNd and QMd, where d is the 

spacing of the equivalent full ULA having equal resolution 

with the SCPMA.  A third sub-array is then interleaved, which 

has Q microphones and the inter-microphone distance is d.  

This arrangement leads to microphone overlaps in the first two 

sub-arrays, while the three uniform sub-arrays also share the 

first microphone.  As a result, the overall microphone number 

of the SCPMA can be obtained as U = P (M + N) + Q – P – 1.   

 
Fig. 3 Common workflow of sub-array processors 

In addition, the apertures of ULA1, ULA2, SCPMA and the 

equivalent full ULA in Fig. 2 are identical, with a virtual 

microphone located at the rightmost of each array.   

Compared with a conventional CPMA, the SCPMA involves 

coefficients P and Q, which change the microphone numbers 

and spacing, and an extra short sub-array is considered [9].     

Assuming K uncorrelated acoustic sources (narrowband or 

wideband) are propagating as plain waves at the speed of sound 

(c = 343 m/s) and impinging on a microphone array from 

different DOAs θi (i = 1, 2, … , K).  The signal model of 

recording can be expressed as 

                    𝑦𝑢(𝑡) = ∑ ℎ𝑢,𝑖(𝑡) ∗ 𝑠𝑖(𝑡)𝐾
𝑖=1 + 𝑣𝑢(𝑡),                 (1) 

where u = 1, 2, …, U, 𝑦𝑢(𝑡) is the output in time domain of 

each individual microphone, and ℎ𝑢,𝑖(𝑡)  is the impulse 

response of source i received by microphone u.  𝑠𝑖(𝑡)  and 

𝑣𝑢(𝑡) are the ith source signal and additive noise to the uth 

microphone, respectively.  For SCPMAs, the output signal is 

obtained as a function of the outputs from all three sub-arrays, 

which needs a processor to calculate the sub-array outputs.  

B. Processors and Operating Frequencies 

There are a variety of processors that are utilized to process 

the sub-array outputs, and the common workflow is illustrated 

in Fig. 3.  Taking the SCPMA as an example, the received 

signal of each sub-array xi (i = 1, 2, 3) is weighted by wi (i = 1, 

2, 3), resulting in the inputs of processor F, which are zi (i = 1, 

2, 3).  The output of each sub-array is obtained through a 

beamforming operation with weights 𝑤𝑎 applied to the set of 

recorded microphone signals, 𝑥𝑎, for each sub-array. 

                                      𝑧𝑎 = 𝑤𝑎
𝐻𝑥𝑎                                     (2) 

where H denotes the conjugate-transpose operation, and 𝑎 

ranges from 1 to A, with A being the number of sub-arrays.  The 

final output from combining all sub-arrays through some 

processing function 

                               𝑧 = 𝐹(𝑧1, 𝑧2, … , 𝑧𝐴 ),                            (3) 

where for CPMAs, A = 2 and for SCPMAs, A = 3. 

Two most popular processors for traditional CPMAs are the 

product processor and min processor, which calculate the 

product and minimum of all weighted sub-array outputs, 

respectively.  Performance evaluations in this paper are mainly 

around these two processors.  

With regard to the spatial Nyquist sampling theorem, the 

ULAs suffer from spatial aliasing problem when the distance 

between neighboring microphones 𝛿 is larger than half of the 

wavelength 𝜆 , i.e. 𝛿 > 𝜆 / 2 , resulting in ambiguity in 

distinguishing the desired source and source from other 
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directions.  The operating frequency describes the maximum 

frequency that enables the array to avoid spatial aliasing, and it 

satisfies 𝛿 = 𝜆 / 2, in which 𝜆 = 𝑐 / 𝑓𝑜𝑝.  Thus, the operating 

frequency of a typical ULA with 𝑁0 microphones is defined as  

          𝑓𝑜𝑝_𝑈𝐿𝐴 =  
𝑐

2𝛿
=

𝑐𝑁0

2𝐿𝑈𝐿𝐴
,                          (4) 

where 𝐿𝑈𝐿𝐴 is the aperture of ULA.  A conventional CPMA’s 

operating frequency equals that of its equivalent full ULA, 

which is [11] 

                                   𝑓𝑜𝑝_𝐶𝑃𝑀𝐴 =  
𝑐𝑀𝑐𝑁𝑐

2𝐿𝐶𝑃𝑀𝐴
,                            (5)                       

where 𝑀𝑐  and 𝑁𝑐  are microphone numbers of the two sub-

arrays, and 𝐿𝐶𝑃𝑀𝐴 is the aperture of CPMA.  In this same way, 

this paper derives the operating frequency of the SCPMA as 

                                 𝑓𝑜𝑝_𝑆𝐶𝑃𝑀𝐴 =  
𝑐𝑀𝑁𝑃𝑄

2𝐿𝑆𝐶𝑃𝑀𝐴
,                            (6)                       

where 𝐿𝑆𝐶𝑃𝑀𝐴 is the aperture of SCPMA.   

C. Performance Measures 

There are two key metrics to evaluate the performance of 

microphone array characteristics, which are the beam pattern 

and array gain.  The beam pattern illustrates the gain of a beam 

former to sources arriving from different directions.  This paper 

considers the horizontal beam pattern, which means the desired 

source is assumed to arrive from 90 degrees.  Therefore, the 

beam pattern of a ULA with 𝑁0  microphones can be 

formulated as follows.   

           𝑩[𝒘(𝜔), 𝜃] = 𝒘𝐻(𝜔)𝒅(𝜔, 𝜃)                     (7)                  

where 𝜔 = 2𝜋𝑓 is the radian frequency, and 𝒘(𝜔) of length 

𝑁0  represent complex beamforming weights, and this paper 

assumes equal weights to achieve a unity gain at the desired 

source DOA.  𝒅(𝜔, 𝜃) of length 𝑁0 is the steering vector that 

is expressed as [1] 

       𝒅(𝜔, 𝜃) =  [𝑑1(𝜔, 𝜃) 𝑑2(𝜔, 𝜃) ⋯ 𝑑𝑁0
(𝜔, 𝜃)]𝑇,     (8) 

where 𝑑𝑛(𝜔, 𝜃) =  𝑒𝑗𝜔(𝑛−1)𝛿𝑐−1cos𝜃(n = 1, 2, …, 𝑁0), and the 

range of 𝜃 is 0 to 180 degree.   

For the SCPMA and CPMA, the beam pattern of each sub-

array is conventionally obtained separately and then combined 

to generate the overall beam pattern based on different 

processors.  In order to make the magnitudes of beam patterns 

of the product processor and min processor remain at the same 

scale, this paper proposes a square root operation to the 

product-processed beam pattern, and the min processor 

compares the absolute values of beam patterns, leading to the 

following beam pattern expressions. 

          𝑩𝐶𝑃𝑀𝐴−𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = √|𝑩1 × 𝑩2
∗ |  = √|𝑩1| × |𝑩2|       (9) 

             𝑩𝑆𝐶𝑃𝑀𝐴−𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = √|𝑩1
′ | × |𝑩2

′ | × |𝑩3
′ |,𝟑           (10) 

                    𝑩𝐶𝑃𝑀𝐴−𝑚𝑖𝑛 = 𝑚𝑖𝑛 (|𝑩𝟏|, |𝑩2|)                     (11) 

                  𝑩𝐶𝑃𝑀𝐴−𝑚𝑖𝑛 = 𝑚𝑖𝑛 (|𝑩1
′ |, |𝑩2

′ |, |𝑩3
′ |)                 (12) 

where * denotes the complex conjugation, and 𝑩3
′  in (10) and 

(12) represents the beam pattern of the short sub-array with Q 

elements of the SCPMA. 

Another crucial measure is the array gain (AG), termed as 

the ratio between the gain to the desired signal and the average 

gain to spatial noises from all undesired directions [12].  The 

AG can be given by [13] 

                            𝐷[𝒘(𝜔)] =
|𝑩[𝒘(𝜔),𝜃𝑠]|2

1/Θ ∑ |𝑩[𝒘(𝜔),𝜃]|2
𝜃≠𝜃𝑠  

,                (13) 

where 𝜃𝑠 is the steering angle, and Θ is the number of discrete 

angles used in calculating the beam pattern 𝑩.  The condition 

𝜃 ≠ 𝜃𝑠 is specified in (13) to make the calculation clear.   

III. DOA ESTIMATION USING SRP-PHAT WITH ADAPTION 

TO THE PROCESSORS 

A. Processed SRP-PHAT and DOA Estimation  

Ref. [8] has shown that conventional SRP-PHAT can be 

utilized to accurately estimate the speech DOA, while this 

paper proposes an approach to adapt SRP-PHAT to different 

processors.    

For SCPMAs and CPMAs, the adapted SRP-PHAT firstly 

calculates the SRP value 𝑃(τ) at each bearing by summing the 

PHAT-weighted generalized cross-correlations (GCC) of all 

combinations of microphone pairs of each sub-array [14]. 

          𝑃(τ) = ∑ ∑ ∫
𝜗𝑦1𝑦2

(𝑓)

|𝜗𝑦1𝑦2
(𝑓)|

+∞

−∞
𝑒𝑗2𝜋𝑓τ𝑑𝑓

𝑁0
𝑖2=𝑖1+1

𝑁0
𝑖1=1        (14) 

where 𝜗𝑦1𝑦2
(𝑓) is the cross-spectrum expressed as follows. 

                         𝜗𝑦1𝑦2
(𝑓) = 𝐸[𝑌1(𝑓)𝑌2

∗(𝑓)]                        (15) 

where 𝐸[⋅]  obtains the mathematical expectation, and 

𝑌𝑖(𝑓) (𝑖 = 1, 2) are the outputs of selected microphone pairs in 

the frequency domain.  Consequently, the SRPs of all sub-

arrays are processed using the product processor and min 

processor.  To maintain all results at the same scale to make 

comparisons, a square root operation is added to the sub-arrays’ 

SRPs before using the product processor.  

                           𝑃𝐶𝑃𝑀𝐴−𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = √𝑃1 × √𝑃2                      (16) 

                  𝑃𝑆𝐶𝑃𝑀𝐴−𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = √𝑃1
′ × √𝑃2

′ × √𝑃3
′               (17) 

                               𝑃𝐶𝑃𝑀𝐴−𝑚𝑖𝑛 = 𝑚𝑖𝑛 (𝑃1, 𝑃2)                     (18) 

                         𝑃𝑆𝐶𝑃𝑀𝐴−𝑚𝑖𝑛 = 𝑚𝑖𝑛 (𝑃1
′, 𝑃2

′, 𝑃3
′)                   (19) 

where 𝑃3
′ in (17) and (19) represents the output power of the 

Q-element sub-array of SCPMA.  Therefore, the preliminary 

DOA estimates are achieved as 

                                 𝜃𝑒𝑠𝑡 =  𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑐τ𝑜𝑝𝑡

|𝛿𝑖1𝑖2|∙𝐹𝑠
),                    (20) 

where  𝐹𝑠  is the sampling frequency, and 𝜏𝑜𝑝𝑡  is the optimal 

time lag leading to the largest SRP, which is calculated by 

                                    𝜏𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜏

(𝑃0),                           (21) 
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where 𝑃0 is used to represent the overall power of array output. 

B. SRP-Adjusted DOA Histogram 

An SRP-adjusted histogram (SAH) approach has been 

discussed in [13] to deal with the spreading in the DOA 

histogram caused by noisy, reverberant or multi-source 

conditions.  By calculating the energy of time-frequency 

instants (similar to other weighting methods [15], [16]), the 

low-SRP DOA estimates are removed by using   

             ℎ𝑖𝑠𝑡𝑠𝑎ℎ(𝜃𝑗) =  {
 ℎ𝑖𝑠𝑡(𝜃𝑗) − 1,     𝑃(𝜃𝑗) < 𝑇

 ℎ𝑖𝑠𝑡(𝜃𝑗),             𝑃(𝜃𝑗) ≥ 𝑇
,          (22) 

where 𝜃𝑗 (0˚ ≤ 𝜃𝑗 ≤ 180˚) denotes each possible DOA, ℎ𝑖𝑠𝑡 is 

the initial histogram and ℎ𝑖𝑠𝑡𝑠𝑎ℎ is the resulting SRP-adjusted 

histogram. Additionally, T is a pre-defined energy threshold, 

which is set to the minimum energy value plus one third of the 

difference between the maximum energy and minimum energy. 

Moreover, the DOA estimation accuracy is further increased 

by modelling the kernel density estimation (KDE) to search for 

the local maximum of the probability density function (PDF), 

which can be formulated as [17] 

                                 𝐹 ′̂(𝑥) =
1

𝑛ℎ
∑ 𝑍 (

𝑥−𝑥𝑘

𝑏𝑤
)𝑛

𝑘=1 ,                       (23) 

where Z is a pre-defined kernel function, 𝑏𝑤 (𝑏𝑤 > 0)  is 

known as the bandwidth, 𝑥𝑘  (𝑘 = 1, 2, … , 𝑛)  are evenly 

distributed samples, and 𝐹′ is the distribution of x. The final 

DOA estimation is achieved by locating peaks of the PDF. 

IV. RESULTS AND DISCUSSION 

A. Experimental Settings  

TABLE I 

EXPERIMENTAL MICROPHONE ARRAY PARAMETERS 

Type of array 
Number of 

microphones 
Aperture (m)  fop  (Hz) 

SCPMA 10 0.8  7717.5 

CPMA 10 0.8 6431.3 

ULA10 10 0.8 2143.8 

ULA36 36 0.8 7717.5 

TABLE II 

SIMULATION CONFIGURATION 

Sampling frequency (𝐹𝑠) 25 kHz 

Frequency bin number for FFT 200 

Frame duration 25 ms 

Frame overlap 50% 

Number of frames 180 

Azimuthal range 0˚ - 180˚ 

Azimuthal resolution 0.1˚ 

Room dimensions 8 × 10 × 5 m3 

Reverberation time (RT60) {0, 200, 400} ms 

Noise levels (SNRs) {10, 20, 30, 40, ∞} dB 

Ground truth DOAs (S1, S2, S3) {107.0˚, 75.7˚, 56.3˚} 

Source-array distance 6.5 m 

Speed of sound (c) 343 m/s 

The experiments evaluate performance in terms of the beam 

pattern, array gain and speech DOA estimation where six types 

of microphone arrays are considered, which are shown in Table 

I, and the SCPMA and CPMA are both processed by the 

product processor and min processor.  The four coefficients of 

SCPMA are set as P = 2, Q = 3, M = 2, N = 3, and the 

configuration of CPMA is 𝑀𝑐 = 5, 𝑁𝑐 = 6, so that the number 

of microphones of both is 10.  Two ULAs are also selected for 

comparison, including a 10-element ULA and a 36-element 

ULA that is equivalent to the SCPMA in terms of having same 

resolution and operating frequency.  All microphone arrays 

considered have the same aperture of 0.8 meters, and their 

operating frequencies are listed in Table I. 

Table II explains configuration details of the DOA 

estimation algorithm, simulated environment and source 

signals.  Speech recordings are calculated using the image 

method [18], and the original speech sources are a sub-set of 

three utterances selected from the IEEE corpus (wideband), 

with the sampling frequency being 25 kilohertz [19].  All 

sources are located in three fixed positions in the far field, and 

their distances to the center of microphone arrays are identical.  

Signals are recorded under different levels of reverberation and 

additive (white) noise and then are transformed to the short-

term frequency domain by utilizing fast Fourier transform 

(FFT), which makes use of 50% overlapped Hamming 

windowed frames of 25ms duration.  Compared with [8], the 

effects of the noise are tested.  After that, the adapted SRP-

PHAT are applied to estimate the DOA of speeches, with the 

error found by calculating the root mean square error (RMSE).  

The expression is 𝑅𝑀𝑆𝐸 =  √
1

𝐶
∑ (𝜃𝑘 − 𝜃𝑡𝑟𝑢𝑒)2𝐶

𝑘=1 , where C is 

the number of estimates, 𝜃𝑘 (𝑘 = 1, 2, … , 𝐶)  is the DOA 

estimation result, and 𝜃𝑡𝑟𝑢𝑒 is the ground truth DOA.   

B. Performance Evaluation of Arrays and Processors  

Fig. 4 illustrates beam patterns of the 10-element SCPMA 

and CPMA processed by the product processor and min 

processor as well as the ULAs using 10 microphones and 36 

microphones, separately.  Fig. 4 (a) to (d) show plots at an 

example frequency 5 kilohertz, which is above the Nyquist 

frequency of 10-element ULA.  Fig. 4 (a) and (b) demonstrate 

the advantages of the min processor over the product processor 

in terms of the PSL level and overall side lobe areas.  For the 

10-microphone CPMA, the PSL level is the same no matter 

which processor is used, while the min-processed SCPMA 

beam pattern has lower PSL.  In addition, the side lobe areas 

are smaller in both figures.  Fig. 4 (c) shows that compared with 

CPMA, the min-processed SCPMA has a beam pattern of 

smaller PSL level, which indicates an advantage of cancelling 

side lobes.  In Fig. 4 (d), there are two large grating lobes 

caused by spatial aliasing in the 10-element ULA beam pattern, 

leading to ambiguity in distinguishing the desired source and 

signals from those two directions.  The 36-microphone ULA’s 

beam pattern is also plotted, which has small side lobes due to 

the usage of a large number of microphones. 

Beam patterns at frequencies which range over the recorded 

signals are investigated in Fig. 4 (e) to (h).  It can be found that 
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       (a)                                                   (b) 

     
    (c)                                                  (d) 

 

    (e)                                                   (f) 

 
    (g)                                                   (h) 

Fig. 4 Beam patterns of the 10-microphone SCPMA and CPMA with the 

product processor and min processor as well as the contrastive ULAs: (a) – (d) 

are plotted for 5 kHz sources while for broadband sources: (e) 10-microphone 
ULA, (f) min-processed CPMA, (g) product-processed SCPMA and (h) min-

processed SCPMA.  Conditions of simulation: 𝜃𝑠 = 90˚.  

the total side lobe magnitude in the min-processed SCPMA’s 

beam pattern is smaller than that of the product-processed 

SCPMA and min-processed CPMA.  The 10-element ULA’s 

beam pattern shows large grating lobes, which do not exist in 

the other three plots. 

Fig. 5 plots AGs of the SCPMA and CPMA with the product 

processor and min processor, separately.  Results of the ULAs 

using 10 and 36 microphones are also illustrated.  It can be seen 

 

Fig. 5 Comparison of AGs of the 10-microphone SCPMA and CPMA with the 
product processor and min processor as well as contrastive ULAs.  Conditions 

of simulation: 𝜃𝑠 = 90˚. 

 

 

 

Fig. 6 Evaluating DOA estimation results using adapted SRP-PHAT for the 10-

microphone SCPMA, CPMA and the contrastive ULAs under multiple levels 

of noise and reverberation: (a) anechoic, (b) 200 ms RT60 and (c) 400 ms RT60. 

that the AGs of the SCPMA and CPMA with min processor are 

generally larger than that of the product processor, and the min-

processed SCPMA has a greater AG than other microphone 

arrays with same numbers of microphones.  For example, at 6 

kilohertz, the elevation of the min-processed SCPMA’s gain is 

about 1 dB compared with the min-processed CPMA’s gain.  

This elevation is around 4 dB if comparing with the gain of the 

product-processed microphone arrays and 10-element ULA.  
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The equivalent full ULA has the highest AG, as it utilizes a 

large number of microphones to achieve a full resolution.  The 

10-element ULA’s AG deteriorates at frequencies larger than 4 

kilohertz, which is around twice its Nyquist frequency.    

Fig. 6 compares speech DOA estimation results from the 

SCPMA and CPMA with the product processor and min 

processor as well as two contrastive ULAs.  Fig. 6 (a), (b) and 

(c) illustrate the results under conditions of anechoic 

environment, 200-millisecond RT60 and 400-millisecond 

RT60, separately.  The SCPMA with both processors achieve 

accurate results and have close DOA estimation accuracy with 

all other types of microphone arrays in Fig. 6 (a) and (b), while 

under higher room reverberation in Fig. 6 (c), the SCPMA is 

less accurate in estimating the DOA. The reason may lie in the 

big side lobes in beam patterns and the degradation in array 

gains of the SCPMA with both processors. 

V. CONCLUSIONS 

This paper evaluates performance of the SCPMA and CPMA 

with the product processor and min processor as well as two 

contrastive ULAs in terms of the beam pattern, array gain and 

speech DOA estimation accuracy.  A new approach based on 

SRP-PHAT is adapted for these processors.  Simulation results 

indicate that the min processor leads to better beam patterns 

and array gains than the product processor, and the SCPMA 

further cancels the side lobe in the CPMA’s beam pattern by 

having smaller PSL level and total side lobe area.  Compared 

with the ULA using same number of microphones, the SCPMA 

significantly increases the operating frequency and has a beam 

pattern without grating lobes, leading to advantages in 

accurately recording high frequency components of speech 

signals.  This is potentially beneficial for applications such as 

source separation and speech enhancement based on time-

frequency DOA estimation.  In addition, the min-processed 

SCPMA possesses the largest array gain among the discussed 

microphone arrays using the same number of microphones.  

Speech DOA estimates show that the SCPMA processed by 

both processors achieve accurate results, having equivalent 

accuracy with the CPMA with both processors, while the 

SCPMA shows less accurate DOA estimates under higher 

reverberation.  The reason may lie in that the side lobes in the 

SCPMA’s beam pattern causing amplification of the source 

reflections.  Overall, the geometry of SCPMA shows positive 

potentials and is worth investigating.     

Future work will focus on further cancelling the side lobes 

in the SCPMA’s beam pattern to obtain more accurate DOA 

estimates.  Additionally, the design of frequency-invariant 

beam patterns will also be researched. 

REFERENCES 

[1] J. Benesty, J. Chen and Y. Huang, Microphone Array Signal 

Processing, Springer-Verlag: Berlin, 2008. 

[2] Brandstein, M., and D. Ward, Microphone Arrays: Signal 

Processing Techniques and Applications, Springer-Verlag: 

Berlin, 2001. 

[3] S. Pasha, C. Ritz and Y. Zou, “Detecting Multiple, Simultaneous 

Talkers through Localising Speech Recorded by Ad-hoc 

Microphone Arrays,” Asia-Pacific Signal and Information 

Processing Association Annual Summit and Conference (APSIPA 

ASC 2016), December 2016. 

[4] J. Batke and H. Hake, “Design Aspects for an Improved B-format 

Microphone”, European Signal Processing Conference 

(EUSIPCO 2009), pp. 2554-2558, August 2009.   

[5] Y. Haneda, K. Furuya, S. Koyama and K. Niwa, “Close-talking 

Spherical Microphone Array Using Sound Pressure Interpolation 

Based on Spherical Harmonic Expansion”, IEEE International 

Conference on Acoustics, Speech and Signal Processing 

(ICCASP 2014), pp. 604-608, May 2014. 

[6] P. P. Vaidyanathan and P. Pal, “Sparse Sensing with Coprime 

Arrays,” the Forty-Fourth Asilomar Conference on Signals, 

Systems and Computers, pp. 1405-1409, 2010. 

[7] D. Bush and N. Xiang, “Broadband Implementation of Coprime 

Linear Microphone Arrays for Direction of Arrival Estimation,” 

Journal of the Acoustical Society of America, vol. 138, issue 1, 

pp. 447-456, July 2015. 

[8] J. Zhao and C. Ritz, “Investigating Co-Prime Microphone Arrays 

for Speech Direction of Arrival Estimation,” Asia-Pacific Signal 

and Information Processing Association Annual Summit and 

Conference (APSIPA ASC 2018), pp. 1658-1664, November 

2018. 

[9] K. Adhikari, “Beamforming with Semi-Coprime Arrays,” The 

Journal of the Acoustical Society of America, vol. 145, issue 5, 

pp. 2841-2850, May 2019. 

[10] Y. Liu and J. R. Buck, “Gaussian Source Detection and Spatial 

Spectral Estimation Using a Coprime Sensor Array With the Min 

Processor,” IEEE Transactions on Signal Processing, vol. 66, no. 

1, January 2018.  

[11] N. Xiang and D. Bush, “Experimental Validation of a Coprime 

Linear Microphone Array for High-resolution Direction-of-

arrival Measurements,” The Journal of the Acoustical Society of 

America, vol. 137, issue 4, April 2015. 

[12] H. Cox, R. Zeskind and M. Owen, “Robust Adaptive 

Beamforming,” IEEE Transactions on Acoustics, Speech, and 

Signal Processing, vol. 35, issue 10, pp. 1365-1376, 1987. 

[13] J. Zhao and C. Ritz, “Co-Prime Circular Microphone Arrays and 

Their Application to Direction of Arrival Estimation of Speech 

Sources,” IEEE International Conference on Acoustics, Speech 

and Signal Processing (ICCASP 2019), pp. 800-804, May 2019. 

[14] J. H. DiBiase, “A High-accuracy, Low-latency Technique for 

Talker Localization in Reverberant Environments Using 

Microphone Arrays,” Brown University, 2000. 

[15] M. I. Mandel, R. J. Weiss and D. P. W. Ellis, “Model-based 

Expectation-maximization Source Separation and Localization,” 

IEEE Transactions on Audio, Speech, and Language Processing, 

vol. 18, issue 2, pp. 382-394, 2010. 

[16] S. Araki, H. Sawada, R. Mukai and S. Makino, 

“Underdetermined Blind Sparse Source Separation for 

Arbitrarily Arranged Multiple Sensors," Signal Processing, vol. 

87, pp. 1833-1847, 2007. 

[17] X. Zheng, C. Ritz and J. Xi, “Encoding and Communicating 

Navigable Speech Soundfields,” Multimedia Tools and 

Applications, vol. 75, pp. 5183-5204, 2016. 

[18] J. Allen and D. Berkley, “Image Method for Efficiently 

Simulating Small-room Acoustics,” The Journal of the 

Acoustical Society of America, vol. 65, issue 4, pp. 943-950, April 

1979. 

[19] IEEE subcommittee on subjective measurements, “IEEE 

Recommended Practices for Speech Quality Measurements,” 

IEEE Transactions on Audio and Electroacoustics, vol. 17, pp. 

227-46, 1969.  

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

313

javascript:void(0)
javascript:void(0)
javascript:void(0)



