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Abstract—Voice activity detection (VAD) is an important pre-
processing part of many speech applications. Context information
is important for VAD. Time-delay neural networks (TDNNs)
capture long context information with a few parameters. This
paper investigates a TDNN based VAD framework. A simple
chunk based decision method is proposed to smooth raw pos-
teriors and decide border points of utterances. To evaluate
decision performance, a metric intersection-over-union (IoU) is
introduced from image object detection. The experiment results
are evaluated on Wall Street Journal (WSJ0) corpus. Frame
classification performance is measured by area under the curve
(AUC) and equal error rate (EER). Compared with long short-
term memory baseline, the TDNN based system achieves a
41.26% EER relative reduction on average in matched noise
condition, and relative improvement of average AUC is 3.82%.
Proposed decision method achieves an 18.74% IoU relative
improvement on average compared with moving average method
on average.

I. INTRODUCTION

Voice activity detection (VAD), also sometimes known as
endpoint detection, is an important preprocessing step in many
speech applications, such as automatic speech recognition
(ASR), keywords spotting, speaker verification, and speech
emotion recognition. An accurate VAD module can detect
speech segments in continuous audio stream to improve per-
formance of speech applications. Many conventional VAD
approaches are based on manual rules. In this case, acoustic
features are used to determine utterance endpoints in terms
of thresholds based on heuristic rules [1]. Frame energy and
zero-crossing rate (ZCR) are measured to detect endpoints of
isolated utterances [2], [3]. Least-squares periodicity estimator
based VAD is also implemented [4] to detect endpoints. Long-
term spectral divergence (LTSD) is adopted to discriminate
speech and non-speech segments [5]. These methods are
sensitive to thresholds so that the rules need to be configured
for different environments. Pattern matching based methods
are also introduced to VAD. Itakura LPC distance is used to
measure distance between test signals and reference patterns
to determine whether the test sample is speech [6]. In another
category, statistical model based methods are used to model
speech and non-speech signals. Gaussian, generalized Gaus-
sian, Gamma, or Laplacian distributions are adopted to model
speech and non-speech segments, and soft decision method is
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used for inference [7], [8], [9]. Hidden Markov model (HMM)
is also used to model speech and non-speech sequences [10].
These methods assume distributions of features, so that the
representation ability is constrained. Statistical learning based
discriminative models are also used to classify speech and non-
speech segments, such as support vector machines (SVMs)
[11], AdaBoost [12]. However, generalization performance of
these methods is limited.

Instead of raw features, deep learning techniques capture
complex structures from data by multiple non-linear transfor-
mations, and outperform other systems in many speech tasks
[13], [14], [15]. Deep neural networks (DNNs) [16], [17], [18],
[19], [20], recurrent neural networks (RNNs) [21], [22], and
convolutional neural networks (CNNs) [23], [24], [25] based
approaches improved robustness of VAD systems in multiple
low signal-to-noise ratio (SNR) conditions. Comparative study
of these three types of neural networks was analyzed, and long
short-term memory (LSTM) outperformed DNNs and CNNs
[26].

Context information is important for improving VAD per-
formance [19]. A common approach to capture context in-
formation is stacking contiguous frames as input to a neural
network. However, it costs more computation to capture long
context information because of big initial affine layers. RNNs
can capture all context information in the past by recurrent
structure. However, it’s difficult to perform parallelization
and its computation cost is higher than feedforward neural
networks. Time-delay neural networks (TDNNs) can capture
longer context information through time [27]. Its higher layers
capture time invariance from longer temporal context infor-
mation. In addition, its computation can be reduced by sub-
sampling [28]. This architecture has been applied to ASR
successfully.

In this paper, we present a TDNN based VAD system. A
chunk based border point decision method is also proposed.
To evaluate decision performance, a metric intersection-over-
union (IoU) is introduced from image object detection [29] and
speech/non-speech segmentation performance is evaluated.
This metric indicates accuracy of border point decision explic-
itly. To the best of our knowledge, it is the first work which
uses IoU to evaluate VAD performance. Frame classification
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is also measured by area under the curve (AUC) and equal
error rate (EER). The experiments are evaluated on Wall Street
Journal (WSJ) corpus. Our TDNN based VAD system achieves
a 41.26% EER relative reduction on average in matched noise
condition, and relative improvement of average AUC is 3.82%,
compared with LSTM baseline. And compared with moving
average method, our border point decision method achieves
18.74% 1oU relative improvement on average.

The rest of this paper is organized as follows. Section II
describes proposed VAD method. The experimental setup, the
segmentation metric, and results are described in Section III.
Finally Section IV summarizes the paper.

II. PROPOSED VAD SYSTEM

The proposed VAD framework is illustrated in Figure 1.
The feature extraction part extracts Mel-frequency cepstral
coefficients (MFCCs) every 10ms with 25ms of frame length.
Part (2) is a time-delay neural network to estimate speech/non-
speech probabilities for every frame. Part (3) decides border
points based on chunk. Part (4) detects endpoints of utterances
and segments input signals.

speech/non-speech border point

border point speech/non-speech
decision segmentation

Fig. 1. System framework: (1) feature extraction (2) speech/non-speech
probabilities estimation (3) border points decision (4) speech/non-speech
segmentation.

feature extraction

classification

A. TDNN Architecture

A TDNN architecture is used for VAD to classify each
frame as speech or non-speech. It is inspired by [28]. In
TDNN architecture, narrow temporal context are captured at
low-level layer, and longer temporal context are captured at
high level hidden layers. A TDNN can be seen as a non-
linear transformation sliding along feature sequences, and
time-invariant feature transform is learned during training.
Otherwise, compared with standard unidirectional RNNs, the
TDNN architecture can capture information from the "future”,
and it’s effective for VAD prediction. Because TDNNs are a
kind of feedforward neural networks, it can be parallelized to
improve computational efficiency.

The network used in the system is showed in Figure 2. The
overall architecture is like a pyramid. We use notation {n}
denotes offset value of the frame. Specifically, in Figure 2,
{-2,—-1,0,1,2} means current frame (offset is zero) and
current frame minus one, current frame minus two, current
frame plus one, and current frame plus two are input to the
network together. To reduce computation, sub-sampling tech-
nique is also used in the architecture. At hidden layers, several
noncontiguous high-level representations are propagated to
next layer. For instance, at second layer, the configuration is
{—2,0,2}, and the configuration of last layer is {—3,0,3}.
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Fig. 2. Proposed neural network architecture.

Using this technique, long context information is remained
and computation cost is reduced.

We use rectifier linear units (ReLLUs) as activation functions
in the proposed neural networks [30]. ReLUs provide sparse
representation capacity for neural networks. This capacity can
be considered as sparsity-inducing regularization, which can
improve generalization of the networks. Compared with other
activation functions, e.g., sigmoid or tanh, computation of
ReLUs is very cheap: exponential function is not needed in
these units, only a comparison operation is used.

B. Chunk Based Decision

Because noise exists in raw posteriors from the neural
networks, we propose a chunk based decision method to
smooth the raw results and decide border points.

Consider a chunk of IV contiguous frames. The problem is
whether the endpoint e; is in this chunk. Assuming probability
of being non-speech of j-th frame is p;, then probability of
the endpoint in this chunk can be calculated as follows:

N

Pp=1-]]Q-p), (1)

Jj=1

where P, denotes the probability of an endpoint existing in
the chunk. In this case, we assume that the probability of each
frame is independent, and estimated by proposed TDNN. Note
that N — oo, P, — 1 means that an endpoint exists in the
whole utterance, and when N = 1, P, = p;, P, is deter-
mined by the probability of the current frame. This method is
a simple smoothing strategy, which use context information in
a fixed window, to improve segmentation performance.

We use this chunk based endpoint decision method to
detect endpoints of utterances. When P, is larger than some
threshold, e.g., 0.95, a border point is considered in that chunk
at high confidence level. Then a simple two-state finite state
machine (FSM) is used to segment the signal. When the system
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is in ”speech” state, contiguous frames between two adjacent
border points will be recorded as a speech segment. And
when the system is in “non-speech” state, contiguous frames
between two adjacent border points will be recorded as a non-
speech segment. Transitions between the states are made in
terms of border point decision.

III. EXPERIMENTS

A. Datasets

Proposed VAD system is evaluated on Wall Street Journal
(WSJO) corpus. The sample rate of the data is 16kHz. The
training set consists of 8343 utterances. To improve robustness
of the models, we randomly add different noises to raw data.
The noise corpora are MUSAN [31], HuNoises I and self-
collected 250 music. Clean utterances and noisy utterances
are combined to train the system, so total number of training
data is 16686. The labels of clean utterances are generated
by forced alignment using a GMM-HMM ASR system, and
labels of noise added utterances are generated in terms of
corresponding clean utterances. We use WSJO test set, which
consists of 330 utterances, to evaluate the system performance.
Similar noise data is randomly selected to added to be test
set. To test the system in more realistic scenarios, unseen
noises, i.e., noises not used in training stage, are also used
to synthesize test data. Noisex92? [32] corpus and 50 self-
collected music are added to WSJO test set with different
SNRs.

B. Segmentation Evaluation Metric

To evaluate segmentation performance, we introduce
intersection-over-union (IoU) metric, which is often used to
evaluate accuracy in object detection task [29]. For a predicted
speech segment, and a corresponding ground-truth speech
segment (e.g., a voice segment labeled by forced alignment),
IoU is defined as follows:

ToU — Tpred N Tqroundtruth

Tpred U Tgroundt’ruth ' (2)
where T)..q denotes predicted segment, i.e., endpoints of the
predicted segment, and Ty oundiruth denotes corresponding
ground-truth segment.

This metric evaluates overlap between the predicted segment
and the ground-truth segment. When the predicted segment
overlaps the ground-truth segment entirely, the ToU value is
1. The corresponding ground-truth segment of the predicted
segment is selected by:

i = arg max IoU (i), (3)

where 4 is index of ground-truth segment, and 7 is selected
ground-truth segment corresponding to predicted segment.

Thttp://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/HuCorpus.html
2http://www.speech.cs.cmu.edu/comp.speech/Section 1/Data/noisex.html
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Only when IoU value is larger than a threshold, that ground-
truth is considered recalled.

IoU (i) ToU(i) > threshold
{

IOAU - ’
0 IoU (1) < threshold

“)

Finally, mean [ oU , which is denoted as ratio of total [ oU
value to the number of predictions, is used to evaluate speech
segmentation performance of the VAD system. Otherwise, we
also evaluate recall value of ground-truth segments, which
is denoted as ratio of recalled predictions to total number
of ground-truth, to evaluate the system. Mean I oU is used
to measure precision of systems, and recall value is used to
measure recall capacity.

C. Results

Proposed system used 13-dimensional MFCCs as feature.
To capture absolute energy information of each frame, nor-
malization technique, e.g., cepstral mean and variance normal-
ization (CMVN), was not used. To compare the effectiveness
of the TDNN system, we also implemented LSTM and DNN
based VAD systems as baselines. All experiments were imple-
mented using Kaldi speech recognition toolkit [33].

The baseline DNN architecture consists of three hidden
layers and a binary classification softmax output layer. Each
layer has 200 nodes. Three frames in the past and three future
frames are stacked with current frame to input to the network.
All non-linear activation units are ReLUs. The total number
of parameters is 144602. The model outputs speech/non-
speech label for each frame. The baseline unidirectional LSTM
architecture has two layers. Each layer consists of 256 LSTM
cells. The total number of parameters is 398338.

The architecture of proposed TDNN consists of four hidden
layers. The structure of the networks is illustrated in Figure 2.
Sub-sampling technique was used in second hidden layer and
last layer. Each layer has 120 ReLUs. The total number of the
network is 138122.

Because of imbalance of distribution of speech data and
non-speech data, we did not use accuracy as evaluation metric
directly. Area-under-ROC-curve (AUC) and equal equal error
rate (FER) were used to evaluate Table I shows experimen-
tal result in matched noise condition. The proposed TDNN
outperforms DNN and LSTM baseline systems. The TDNN
shows robustness in low SNR conditions, especially 5dB, 0dB,
-5dB.

TABLE I
FRAME LEVEL CLASSIFICATION PERFORMANCE IN MATCHED NOISE
CONDITIONS.

15dB 10dB 5dB 0dB -5dB average

DNN 09828 09732 09573 0.9315 0.8905 0.9471

AUC LSTM 09874 0.9782 0.9605 0.9287 0.8778  0.9465
TDNN  0.9958  0.9935 0.9888 0.9788 0.9564  0.9827

DNN  0.0623  0.0835 0.1112 0.1488 0.1990 0.1210

EER LSTM  0.0498 0.0692 0.1019  0.1494  0.2102 0.1001
TDNN  0.0258  0.0338  0.0481 0.0724 0.1138  0.0588
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TABLE 11
FRAME LEVEL CLASSIFICATION PERFORMANCE IN UNSEEN NOISE CONDITIONS.

Noise | System | Metric 20dB 15dB 10dB 5dB 0dB -5dB Average
DNN AUC 0.9759 | 0.9525 | 0.9170 | 0.8632 | 0.7869 | 0.6973 0.8655
EER 0.0724 | 0.1045 | 0.1477 | 0.2078 | 0.2809 | 0.3546 | 0.1947
babble | LSTM AUC | 0.9900 | 0.9784 [ 0.9507 | 0.8868 | 0.7796 | 0.6609 | 0.8744
EER 0.0392 | 0.0684 | 0.1161 0.195 0.2937 | 0.3868 0.1832
TDNN AUC 0.9810 | 0.9622 | 0.9335 | 0.8912 | 0.8263 | 0.7393 | 0.8889 |
EER 0.0651 | 0.0931 | 0.1266 | 0.1695 | 0.2310 | 0.3031 | 0.1647
DNN AUC | 0.9879 | 0.9759 | 0.9543 | 0.9163 | 0.8473 | 0.7379 | 0.9033
EER 0.0406 | 0.0648 | 0.1013 | 0.1548 | 0.233 0.3305 0.1542
fact LSTM AUC 0.9931 | 0.9879 | 0.9768 | 0.948 | 0.8753 | 0.7441 0.9209
actory EER | 0.0261 | 0.0383 | 0.0643 | 0.1157 | 0.2062 | 0.3244 | 0.1292
TDNN AUC | 0.9955 | 0.9916 | 0.9845 | 0.9688 | 0.9270 | 0.8284 | 0.9493
EER 0.0206 | 0.0300 | 0.0466 | 0.0777 | 0.1424 | 0.2559 | 0.0955
DNN AUC 0.9959 | 0.995 0.9937 | 0.9916 | 0.9886 | 0.9838 0.9914
EER 0.0244 | 0.0271 | 0.0295 | 0.0332 | 0.0386 | 0.047 0.0333
volvo LSTM AUC 0.9951 | 0.9933 | 0.9911 | 0.9885 | 0.9852 | 0.9794 0.9888
EER 0.0252 | 0.0294 | 0.0341 | 0.0388 | 0.0439 | 0.0557 | 0.0379
TDNN AUC | 09982 | 0.9981 | 0.9977 | 0.9971 | 0.9961 | 0.9947 | 0.9970
EER 0.0148 | 0.0159 | 0.0172 | 0.0188 | 0.0209 | 0.0242 | 0.0186
DNN AUC 0.9887 | 0.9804 | 0.9658 | 0.9399 | 0.8958 | 0.8287 0.9332
EER 0.0472 | 0.0656 | 0.0929 | 0.1329 | 0.1874 | 0.2554 | 0.1302
music LSTM AUC 0.9895 | 0.9808 | 0.9639 | 0.9289 | 0.8643 | 0.7747 0.9170
) EER 0.0433 | 0.0648 | 0.0977 | 0.1486 | 0.2188 [ 0.2978 0.1452
TDNN AUC | 0.9960 | 0.9932 | 0.9879 | 0.9783 | 0.9584 | 0.9170 | 0.9718
EER 0.0238 | 0.0325 | 0.0467 | 0.0675 | 0.1029 | 0.1593 | 0.0721
. 0.8
From Table I, it can be seen that proposed TDNN outper- o
forms the baseline DNN and LSTM based systems. Compared 0'6
with LSTM, average EER is reduced by 41.26% relatively, and o
relative improvement of average AUC was 3.82%. 5 0'4
3o
Table II shows experimental results of the three networks 03
in different unseen noise conditions. The volvo noise recorded 0.2
in a running car is a kind of typical low-frequency noise. 01 ’_ﬂ
The factory noise consists of intermittent knocking noise and 0
roars of machines. These two kinds of noise were used to clean 20d8 10ds ode average
test influence on system performance of low-frequency noise Onosmooth  Emoving average smooth  Dlchunk based decision
and non-stationary noise. Babble is a kind of noisy human i
. . . Fig. 3. IoUs vs. SNRs
speech sound. We used it to test speech-like noise influence
on systems. Music, which covers various frequency range, was 08
used to test influence of harmonic noise. All these four noisy 0.75
environments are common in real-life applications. 07
0.65
The three networks perform robustly in these four con- ., os
ditions. Even in -5dB, influence of the volvo noise, i.e., S 055
continuous low-frequency noise from motors in car, is limited. T 05
. . . . o e 0.45
Influence of the music noise and factory noise is distinct oa
to these three models, especially in very low SNRs, i.e., 0.35 m
0dB and -5dB. Babble noise is consists of human voice. 03

And it is difficult for the models to distinguish foreground
speech and background noise voice in low SNR conditions.
So performance in babble noise environment is worst. In
this comparison, proposed TDNN also outperforms baseline
systems on average. Note that the TDNN performs better than
LSTM, it is due to the fact, that the TDNN captures left context
and right context simultaneously, but LSTM is unidirectional.
In addition, the parameters of TDNN is fewer than DNN and
LSTM baselines.

To evaluate proposed chunk based border point decision
method, we did segmentation experiments. The network used

clean 20dB 10dB 0dB average

Ono smooth Emoving average smooth  Ochunk based decision

Fig. 4. Recalls vs. SNRs

in these experiments was proposed TDNN. In this experiment,
we concatenated all 330 test set audio to one file, which is 40.3
minutes. Noise from Noisex92 set is added to the file randomly
in different SNRs. The ground-truth labels of segments were
generated for each audio file using force alignment, and
then were concatenated. As comparison, direct decision on

1176



Proceedings of APSIPA Annual Summit and Conference 2019

raw prediction results and commonly used moving average
method [26] to smooth the raw prediction results was used as
baselines. We did experiments to find proper hyper-parameters
of the systems. We set threshold of direct decision as 0.55.
The baseline moving average smoothing method used fixed
window of five and threshold as 0.45. The chunk size of
proposed chunk based decision was nine, and the threshold
was 0.95.

The IoU results are illustrated in Figure 3. The proposed
decision method performs more robustly in noise environ-
ments than baseline moving average smoothing method. In
0dB noise condition, IoU value of proposed chunk based
decision improves by 45.26% than moving average method
relatively. Proposed method achieves 18.74% IoU relative
improvement over to moving average method on average. Even
though moving average method smooths sudden change in raw
posteriors, it doesn’t fuse context information for decision.
However, proposed method reduces influence of a single
frame, and fuses a chunk of frames for decision. The recall
values in different conditions are showed in Figure 4. Because
smoothing posteriors decreases sensitivity of decision, recall
values are hurt a little. Relative to moving average method,
the proposed method attains higher recall values in high SNR
conditions.

IV. CONCLUSIONS AND FUTURE WORK

This paper proposes a TDNN based VAD framework. A
chunk based decision method is used to segment speech/non-
speech signals. loU metric is introduced from image object de-
tection to measure performance of segmentation. Performance
in matched and unseen noise conditions are evaluated sepa-
rately. In future work, we will improve the system performance
in low SNR condition with speech enhancement techniques.
Otherwise, more efficient decision method and more complex
FSMs will be investigated to improve segmentation perfor-
mance.
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