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Abstract—Lombard speech is intelligible speech produced
by humans in noises. In this study, we focus on mimicking
Lombard speech from natural neutral speech under backgrounds
with varying noise levels to increase its intelligibility in these
noises. Other approaches map corresponding speech features
from the neutral speech to Lombard speech, which can only
apply for an individual noise level, and cannot reveal feature
tendencies. Instead, we implement a Lombard effect model to
continuously estimate feature values with varying noise levels.
The techniques, which are based on coarticulation, a source-
filter model with MRTD and spectral-GMM, are used to easily
modify features of the neutral speech to obtain their tendencies.
Finally, these features are synthesized by STRAIGHT vocoder
to obtain Lombard speech. The mimicking quality is evaluated
in subjective listening experiments on similarity, naturalness,
and intelligibility. The evaluation results show that the proposed
method could convert neutral speech into Lombard speech in
varying noise levels, which obtains comparable results with the
state-of-the-art method.

I. INTRODUCTION

Lombard speech [1] is intelligible speech produced in
noisy environments. Lu and Cooke and colleagues [2], [3]
reported that the distinctive acoustic features of Lombard
speech included increased duration, increased f0, and flattened
spectral tilt, compared with the neutral speech (uttered in quiet
environments). By manipulating these acoustic features, a
mimicking Lombard speech [4], [5] can be synthesized. How-
ever, when the levels of noise are varying, mimicking Lombard
speech has been still challenging. The state-of-the-art methods
based on Bayesian GMM (BGMM) [6] or DNN techniques
[7] would require a huge dataset to train to deal with such
multiple noise levels. Rottschaefer et al. [8] proposed an online
Lombard-adaptation in incremental speech synthesis to present
and evaluate Lombard speech when its model parameters
are updated continuously. The system achieved good results
in adapting voice intensity and spectral emphasis (likewise,
amplified speech) but failed with other features. It might be
because of the lack in a detailed analysis and the simplicity
of their proposed adaptation model. Sequentially, by analysis,
Ngo et al. [9] found that these distinctive features of flattened
spectral tilt, increased power envelope (or raises in modulation
spectrum in specific frequencies), increased f0, increased F1,
increased vowel duration are varying with increasing noise

TABLE I: Acoustic feature groups and their parameters used
to mimic Lombard speech under varying noise levels

Feature group Parameter

Spectral tilt Increased c0, decreased c1 and c2
f0 Increased f0 mean and f0 range
Power envelope Increased consonant-to-vowel ratio and av-

erage power, positive correlation with f0
Formants Increased F1, F2, F3, F4, and decreased

the vocal tract length correlated with the
increase in f0

Duration Increased vowel duration

levels. It suggested a possibility to model and control these
features with varying noise levels.

Then, we proposed a Lombard effect model among noise
levels for parameter values of acoustic features. The synthesis
and modification method based on coarticulation and source-
filter models and modified-restricted-temporal decomposition
can easily control the features with varying noise levels.

For evaluation, we compare our method with BGMM-based
methods and Lombard speech produced in some typical noise
levels of 66, 72, 78, 84 dB. To show the similarity with
Lombard speech, we carried out experiments in noise-free
conditions on the Lombard speech dataset (all mimicking
speech vs. Lombard speech). To examine naturalness and
intelligibility among mimicking speech in general (various
mimicked features and datasets), we carried out the exper-
iments among the mimicking speech on a different dataset
(ATR dataset) in a background of pink noise.

II. METHOD

To mimic Lombard speech with varying noise levels, we
describe modified acoustic features, the proposed Lombard
model and modification synthesis techniques as follows.

A. Modified acoustic features

The features were mainly reported by Ngo et al. [9] and
others with cepstral coefficients, f0 range, F2, F3, F4, the
length of vocal tract, and average power envelope. These
feature groups and their parameter changes with increasing
noise levels are summarized as in Table I.
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Fig. 1: Lombard effect model of acoustical parameter values
ψ in log scale depending on the noise level x. K indicates the
upper or lower limit, to which the saturation approximates,
x0 indicates the noise level, at which the drastic change to
Lombard speech occurs.

B. Lombard effect model

We updated our previous model [10] based on the model
reported by Hodgson et al. [11], in which the Lombard effect
represents the relationship between the constitutional factors
of environments with noise levels. Our model represents the
relationship between acoustical parameter values and noise
levels. It was estimated with a drastic change around 66 dB
[11] and a saturation started from 90 dB as shown in Fig. 1
and Eq 1.

ψ(x) =
K

(C + e−B(x−x0))1/v
(1)

By applying this model, for each acoustical parameter, a
model function was estimated by non-linear least square fit
(lsqcurvefit in Matlab) with initial values of (K,C,B, v) =
(K0, 1, B0, 1). K0 = maximum of the estimated values if the
changing tendency of the values with noise levels was realized
to be increased, and vice versa i.e. the minimum of that values.
B0 was set equal to the linear slope estimating these values.
The lower and upper bound are (−∞, 0, 0, 0), (∞,∞,∞,∞)
respectively with a step size of 10−6. The root mean square
errors of the fitting were about 1.3 dB, 0.1 dB, and 0.1 dB for
c0, c1, and c2 of spectral tilt respectively, 0.04 dB for power
envelope, 1 Hz for all F1, F2 and f0, and 1ms for duration.
The errors were small to compare with variations of acoustical
parameter values among noise levels.

C. Modification synthesis techniques

In an addition to STRAIGHT [12], we used the following
techniques to extract and modify features.

1) Modified restricted temporal decomposition: MRTD
[13] is mainly applied to spectral feature to decompose and
interpolate temporal information and spectral parameters at
some specific time locations. The spectra are decomposed
into event targets (which are spectral parameters) and event
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Fig. 2: Locations to extract event targets in temporal decom-
position, based on coarticulation model. STM indicates the
spectral transition rate of the phoneme. FSTM1 and FSTM2
are respectively the derivatives of STM on the first and second
halve.

functions (which are temporal information used in the inter-
polation). We extended the decomposition and interpolation
to other features. To represent coarticulation better, we used
the same event function of the spectral feature to interpolate
all features. Modifications were carried on event targets of
each feature, excepting the scaling of duration was done by
modifying the event functions.

2) Coarticulation model for MRTD: The coarticulation
effect of two consecutive phonemes is critical in perceiving
natural sound. Therefore, a model of this effect (Figure 2)
become important as well. According to Nghia et al. [14], in a
phoneme, it has five locations: two boundaries, two transitions,
and a nuclei center to represent the coarticulated transition
regions. The nuclei center is the minimal point of the spectral
transition rate (STM) of the phoneme. The transitions are
respectively minimal and maximal points of the derivatives
of each half of the STM. Those points were locations to
extract event targets in temporal decomposition for modeling
the phonemes and modifying features to Lombard speech.

3) Source filter model with cepstrum-based spectral tilt
and spectral-GMM-based vocal tract spectrum: This model
precisely decomposes and modifies spectral tilt and formants.
The tilt was estimated by a smooth cepstrum, which is
represented by three first coefficients c0, c1, and c2. The vocal
tract spectrum was divided into two parts: the positive (peaks)
and negative (dips) components after subtracting c0, c1 and
c2. They were further modeled by spectral-GMM [15]. The
modification of F1, F2, F3, F4 (the formant frequencies were
estimated by using KARMA [16]) and the length of the vocal
tract were done on the positive component, while the negative
one was preserved.

4) Fujisaki model to control f0: f0 was parameterized and
controlled by Fujisaki model [17], [18]. In the model, f0 base-
line Fb, amplitude of accent commands (Aa) were increased,
the amplitude of phase commands were varied to obtain the
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target f0 mean and range by non-linear optimization.
5) Target prediction model to control power envelope:

Power envelope was parameterized by the second order damp-
ing modeling, in which the parameter target was used to
control power envelope portions to expected powers. The
target was extracted using target prediction model [19], [20].

In short, duration was controlled by event functions. Spec-
tral tilt was modified by cepstral coeffients. Formants were
modified by spectral-GMM. f0 was modified by using Fujisaki
model. Power envelope was controlled by the target of the
second order damping model. After all features were modified,
they were used to synthesize the mimicking Lombard speech
by STRAIGHT.

III. LISTENING EXPERIMENTS

To evaluate our models with any noise levels, there are two
main experiments: similarity, and intelligibility and natural-
ness.

A. Experiments of similarity

The purpose of this experiment was to compare our model
with BGMM in a mean of resembling Lombard speech.

1) Speech material: Speech material was drawn from the
recorded speech (both Lombard speech produced at 66, 72,
78, 84 dB noise levels and neutral speech) [21]. 105 Japanese
words (4-mora) of a male and a female were taken.

2) Speech types: BGMM-based methods had two
types: Glottal vocoder-based (called GlottalBGMM) and
STRAIGHT-based (called STRAIGHTBGMM) synthesis. In
both, the modified features were spectral tilt, f0, duration, and
power envelope. In addition, we synthesized two more types:
ProposedF0Tilt and ProposedF0TiltFormant. The former’s
modified features were spectral tilt, f0, duration, and power
envelope. The latter’s modified features were spectral tilt,
f0, Formants, duration, and power envelope. In total, it had
four mimicking types: GottalBGMM, STRAIGHTBGMM,
ProposedF0Tilt, and ProposeF0TiltFormant.

3) Listeners: Twelve native Japanese including 9 males and
3 females from 23 to 25 years old (a mean of 24) with no
report of hearing problems.

4) Procedure: The complete set was 105 words in both
Lombard speech and four mimicking types mentioned above
produced at 4 noise levels: 66, 72, 78, 84 dB noise levels.
A stimulus was a pair of concatenated the mimicking speech
and Lombard speech with the same content. There were 1680
stimuli in total (105 words x 4 pair types x 4 noise levels).
Each listener was assigned 64 pairs at a specific noise level
using balanced design. Each pair type/noise level was listened
by the same number of listeners. The listeners were asked to
evaluate how the mimicking speech resemble Lombard speech
in a five scale (1: none, 2: little, 3: moderately, 4: much, 5:
very much) by clicking the correspondent buttons.

The experiment was carried out in a sound-proof room with
a high-quality headphone (STAX SL51-2216) connected with
a desktop computer via an amplifier (STAX SRM-1/MK-2).
The amplifier was used to set an exact noise level for the
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Fig. 3: Similarity of the mimicking speech. The bar and
error values indicate the mean and standard deviation among
listeners. The values of similarity mean 1: none, 2: little, 3:
moderately, 4: much, 5: very much similar to Lombard speech

test measured by a sound level meter (hand-held analyzer type
2250 Bruel. & Kjar), which had been calibrated. Before carry-
ing the experiment, listeners were familiarized with Lombard
speech by listening Lombard and neutral speech.

5) Results and discussion: Figure 3 shows the results of
similarity to Lombard of the mimicking speech. Throughout
all noise levels, the similarity scores decreased by STRAIGHT-
BGMM, ProposedF0Tilt, ProposedF0TiltFormant, and Glottal-
BGMM repectively. ProposedF0Tilt seemed comparable with
STRAIGHTBGMM. It could be seen that the Lombard effect
model could help to obtain a similar result with the statis-
tical methods. The results shows that proposed model could
correctly represent Lombard speech with varying noise levels.

B. Experiments of naturalness and intelligibility

The purpose of this experiment was to evaluate the intelli-
gibility and the naturalness of the mimicking speech by our
model compared with BGMM-based methods when different
set of features are modified. This might reveal some clues
to improve intelligibility and naturalness for the speech in
noise. The experiment was carried out in the other dataset
without Lombard speech. This also proved the generality of
our proposed model.

1) Speech material: Speech material was drawn from the
ATR dataset. 384 words (3-mora) of neutral speech of six
different speakers (3 males, 3 females)

2) Speech types: We used four types: ProposedTilt,
ProposedF0Tilt, ProposedTiltFormant, and Pro-
posedF0TiltFormant. ProposedTilt’s modified features
were spectral tilt, duration and and power envelope.
ProposedF0Tilt’s modified features were spectral tilt, f0,
duration and power envelope. ProposedTiltFormants’s
modified features were spectral tilt, Formants, duration
and power envelope Lastly, ProposedF0TiltFormants’s
modified features were f0, spectral tilt, Formants, duration
and power envelope. We chose STRAIGHTBGMM as
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a reference due to the same vocoder. In total, it had 5
types: STRAIGHTBGMM, ProposedTilt, ProposedF0Tilt,
ProposeTiltFormant, and ProposeF0TiltFormant.

3) Listeners: Seven native Japanese including 5 males and
2 females from 22 to 25 years old (a mean of 23.57) with no
report of hearing problems.

4) Maskers: Pink noise [22] at 4 noise levels: 66, 72, 78,
84 dB had been used, thus there were 4 maskers.

5) Procedure: The complete set was 7680 stimuli (384
words x 5 speech types x 4 noise level maskers). Within a test
of intelligibility or naturalness, 60 unique words were assigned
to one listener at each noise level. Each listener listened to all 4
noise levels in an increasing order. They did the intelligibility
test and naturalness test in sequence.

• Intelligibility: During this task, the stimulus was played
only one time. The listeners were asked to write down
the word they heard by using a keyboard. They clicked
the next button to continue.

• Naturalness: During this task, the stimulus could be
played again, the listeners were asked to evaluate their
feeling of naturalness (human voices) in four scales (1:
unnatural, 2: rather unnatural, 3: rather natural, 4: natural)
by clicking the correspondent buttons. The next stimulus
would be played immediately after that.

6) Results and discussion:
• Intelligibility

Figure 4 shows the results that only with the modification
of spectral tilt, our method obtained a comparable result
with STRAIGHTBGMM. With the modification of the
other feature sets, it obtained lower intelligibility. How-
ever, throughout all noise levels, the scores are varied
in a similar way. This might be due to some interac-
tions among features rather than the proposed model.
Therefore, the proposed model still well contributed to
this intelligible adaption with varying noise levels, which
represented Lombard speech.

• Naturalness
Figure 5 shows the results among different feature sets.
Our method with the modification of spectral tilt showed
a comparable result with STRAIGHTBGMM. With the
modification of the other feature sets, it obtained lower
naturalness. It could be explained by effects of the
modification of some parameter features rather than the
proposed model. For an example, the modified f0 range
might cause wrong pitch accents, thus reduced the nat-
uralness. Therefore, it could be seen that the proposed
model still worked in this evaluation.

IV. CONCLUSIONS

In this paper, we have presented the concept of the Lombard
effect model with varying noise levels and its application with
the modification-synthesis method. The method was based
on coarticulation and source filter model and MRTD with
spectral-GMM, which can easily control features with multiple
noise levels. The results showed that our method can be com-
parable with the state-of-the-art method. The proposed model
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Fig. 4: Intelligibility of the speech when various features are
mimicked, i.e. percentage of correctly answered mora in a
word. The bar and error values indicate the mean and standard
deviation of among participants.
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Fig. 5: Naturalness of the speech when various features are
mimicked. The bar and error values indicate the mean and
standard deviation among participants. The values of natural-
ness mean 1: unnatural, 2: rather unnatural, 3: rather natural,
4: natural.

has correctly represented Lombard speech with varying noise
levels. Specifically, at a fixed noise level, the state-of-the-art
method could be better. When noise levels are continuous, it
cannot adapt features to the noise levels. Otherwise, our model
can interpolate Lombard speech with any noise levels. In
order to obtain better intelligibility and naturalness, we aim to
improve our modification methods in f0 contour and formants
in future work. This Lombard effect model is expected to be
used in an extrapolation model for an even better intelligible
speech based on Lombard speech.
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