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Abstract—Text-independent short utterance speaker verifica-
tion (TI-SUSV) task remains more challenging compared to the
full-length utterance SV task due to inaccurately estimated fea-
ture statistics or insufficient distinguishable speaker embeddings.
It is noted that recently developed end-to-end SV systems (E2E-
SV) achieve the state-of-the-art on several datasets, which directly
learn a mapping from speech features to the compact fixed
length speaker embeddings. In this study, following the E2E-SV
pipeline, we strive to further improve the accuracy of TI-SUSV
task. Our research is based on two intuitive ideas: better speech
feature representation for SUs and better training loss function
to obtain more discriminative embeddings. Specifically, a bi-
directional gated recurrent unit network with residual connection
(Res-BGRU) is firstly designed to improve feature representation
capability. Secondly, a novel affinity loss is proposed where
the mini-batch data has been manipulated to obtain more
supervision information. In details, a speaker identity affinity
matrix formed by one-hot speaker identity vectors is taken as
the supervisor of the speaker embedding affinity matrix to obtain
better inter-speaker separability and intra-speaker compactness.
Experimental results on the Voxceleb1 dataset show that our
system outperforms a conventional i-vector and x-vector system
on TI-SUSV.

I. INTRODUCTION

Speaker verification (SV) is the task to verify whether a

speech segment belongs to a claimed identity. According to

the restriction of the speech content, speaker verification is

usually classified into text-dependent speaker verification and

text-independent speaker verification.

For decades, i-vector+PLDA approach has been one of the

most accomplished approaches for text-independent speaker

verification [1], where variable-length utterances are mapped

to the fixed-size low-dimensional feature vectors. However,

research shows that the performance of the i-vector+PLDA

approaches degrades drastically for short utterance SV task

(SU-SV). Taking the equal error rate (EER) as a performance

measure, one example of EER versus speech duration is shown

in Fig. 1. It is clear to see that when the utterance duration

becomes shorter than 3 seconds, EER is larger than 12%

which is prohibitive for many applications. Further analysis

shows that performance degradation may come from linguistic

content limitation and nonnegligible statistical variations [2].

To improve the performance of the SU-SV systems, several

deep learning methods have been proposed and achieved

the state-of-the-art on several public SV datasets. In [3],

Fig. 1. EER of i-vector+PLDA versus speech durations (verification trials
with Voxceleb1). EER increases from 6.8% to 26.4% when speech duration
reduces from 18 second to 1 seconds.

researchers cast the SU-SV together with the keyword de-

tection as a multi-task learning task, where the additional

text phoneme information has been employed to reduce the

EER of the SU-SV task effectively. From another perspective,

the feature of voice quality is used as prior information to

reduce the within-speaker embedding variabilities [4]. Their

experimental results validate the performance improvement

especially when the speech content was mismatched for SU-

SV task.

Since the SV task is essentially a binary classification task,

feature representation of speakers is crucial. In [5, 6, 7], deep

neural networks with softmax loss are designed to learn the

effective feature representation for speakers and categorical

labels for the SU-SV task. At the verification stage, the

output from the last hidden layer of the trained model is

taken as the speaker embedding. However, the softmax loss

does not essentially encourage the speaker embeddings to

have inter-speaker separability and intra-speaker compactness.

Recently, using different end-to-end loss functions, such as

triplet loss [8] and contrastive loss [9], to train speaker

discriminative embeddings has drawn more attention[10, 11].

These metric learning based methods achieved the state-of-

the-art performance on their self-built short utterance datasets,

which demonstrate the effectiveness of the end-to-end deep

network for feature learning with the pair-wise loss for SU-

SV task. Motivated by these work, we conducted an in-depth

analysis and have the following observations: 1) the end-to-end

SV model with metric learning approach is effective since the

distance information between generated speaker embeddings

can be manipulated to enhance the learning ability of the deep
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model; 2) the pair-wise loss asks for careful pair selection

strategies to avoid suboptimal local minima. One typical pair

selection scheme is to increase the weight of hard samples.

Hence, the pure data-driven metric learning approach is much

more attractive since it does not need to specifically select the

training pairs.

Bearing above analysis in mind, in this study, we build

a bi-directional gated recurrent unit network with residual

connection (Res-BGRU) which directly maps the variable-

length hand crafted features to the fixed-size speaker embed-

dings. Moreover, the speaker identity affinity matrix of the

one-hot speaker identity vectors is taken as the supervision

information and a novel affinity loss is derived to simul-

taneously maximize the inter-speaker separability and intra-

speaker compactness. Specifically, our proposed affinity loss

makes use of all correlation information between the speaker

embedding pairs, therefore more discriminative information

and better robustness are achieved. Finally, the whole system is

trained by optimizing the affinity loss in an end-to-end manner.

Experimental results validate the improved performance of our

method.

The remainder of the paper is organized as follows. Section

II details our proposed SU-SV system. Section III presents

the experimental setup and results. Section VI concludes this

paper.

II. PROPOSED SYSTEM

As discussed above, in this study, we propose an end-to-end

speaker verification system for improving the performance of

SU-SV task. The configuration of our designed deep model

is shown in Fig. 2. In Fig. 2, BGRU denotes a bi-directional

gated recurrent unit layer and the ResBlock consists of one

BGRU and one batch normalization layer. The statistic pooling

layer is used to convert the frame-level features into a fixed-

size representation. Two feedforward fully connection layers

are designed to extract speaker-discriminative embeddings.

Clearly, our model essentially maps a batch of handcrafted

feature vectors (B samples in Fig. 2) into a speaker embed-

ding matrix (S in Fig. 2). To simplify the presentation and

distinguish it from other methods, our proposed end-to-end SV

system is named as Res-BGRU and the details will be given in

part A. Our Res-BGRU is optimized with our proposed affinity

loss, which will be introduced in part B. The verification

process will be described in part C.

A. System Design

Frame-level Feature Extraction. Motivated by the power-

ful modeling capability of the recurrent networks for temporal

sequence [12], in our design, BGRU is employed to map

the variable-length frame-level features to the fixed-length

frame-level feature. Compared to the popular Long Short-Term

Memory (LSTM), BGRU is easier to train and has a faster

convergence [13]. Moreover, the bi-directional structure has

the ability to capture past and future information respectively.

Besides, motivated by the work in [14], we design to use

the residual connections to improve the feature extraction
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Fig. 2. The architecture of our proposed Res-BGRU system. B denotes the
batch size of input data, D is the dimension of output speaker embedding.

capability of the deep networks and speed up its convergence.

Combing these two techniques, the ResBlock is delicately

designed and the details are shown in Fig. 2.

Segment-level Feature Extraction. To aggregate the feature

over time steps, following the design in [15], a statistics

pooling layer approach is adopted where the frame-level

features are taken as its input to generate a single segment-

level feature vector. For further extracting the higher level

feature vectors, two feedforward fully connection layers are

designed to generate D-dim speaker embeddings.

Considering the possible interferences in speech signals, the

noise robustness is another issue where the salient speaker

information is expected to be preserved and insensitive to

noise interferences. Motivated by the work in [16, 17], a

Max Feature Map (MFM) is taken as the activation function

which is different from the commonly used Rectified Linear

Units (ReLU). ReLU discards values smaller than zero while

MFM divides output nodes equally and outputs the one with

maximum value in element-wise, defined as follows:

om “ maxpzm ` zm` M
2

q (1)

where 1 ď m ď M{2, M denotes the number of

nodes in feedforward layer, z denotes the input tensor, o P
R

M
2 represents the output of the MFM operation.

B. Affinity Loss

Intuitively, the speaker embeddings generated by our deep

model are expected to provide good inter-speaker discrimi-
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nation and intra-speaker compactness. To achieve this target,

we propose a novel affinity loss function (AL) which exploits

the correlation information of all speaker embedding pairs of

a data batch. It is noted that the discriminability of speaker

embeddings extracted by the deep model using contrastive loss

and triplet loss depends on the carefully designed pair selection

strategy. Our motivation is to remove the pair selection con-

strain and make use of the information provided by the speaker

embedding matrix (in Fig. 2) to enhance the inter-speaker

discrimination and intra-speaker compactness. Our method is

introduced as follows.

As shown in Fig. 2, assume that our proposed Res-BGRU

is parameterized by θ. Res-BGRU maps the feature vector

x to a D-dimensional unit-norm speaker embedding s “
fθpxq P R

1ˆD, i.e. }s}2 “ 1. The one-hot label vector

y P R
1ˆD indicates the corresponding speaker identity of

x, where N is the total number of speakers involved in

training set. While training in a mini-batch, B speech segment

features are randomly selected to form a set as X “ txbuBb“1.

Correspondingly, the output of Res-BGRU and label matrix

associated with X can be denoted as S “ tsbu and Y “ tybu,

respectively. Here S is named as the speaker embedding matrix

and Y is the speaker identity matrix. Following mathematic

notations, the matrix SST P R
BˆB is termed as the speaker

embedding affinity matrix and YYT P R
BˆB as speaker

identity affinity matrix. In this study, we aim to fully explore

the speaker information and the similarity of the speaker

embedding pairs in a data batch. A novel affinity loss is

proposed as follows:

L “ }1 ´ SST d YYT }2F ` }´1 ´ SST d p1 ´ YYT q}2F
“

ÿ

i,j
yi“yj

p1 ´ cospsi, sjqq2 `
ÿ

i,j
yi‰yj

p´1 ´ cospsi, sjqq2

(2)

where } ¨ }2F denotes the squared Frobenius norm and d
is the Hadamard product. It is noted that pSST qi,j “ si ¨ sTj
indicates the cosine similarity between si and sj . If segment

i and j belong to the same speaker, then the cosine similarity

between si and sj should be close to 1. Also, YYT is a binary

matrix, specifically, if the segment i and j belong to the same

speaker (with the same one-hot label vector) then we have

pYYT qi,j “ 1. Otherwise, we have pYYT qi,j “ 0. Under a

supervised learning framework, YYT is known which can be

calculated using the training data.

From the second line of 2, the affinity loss is divided

into two parts. (a) The first item aims at promoting the

similarity between different embeddings of the same speaker;

(b) The second item then aims at promoting the discrimination

between the speaker embeddings from the different speakers.

During the training stage, two parts in 2 are optimized simul-

taneously.

To ensure that the affinity loss function defined in 2 is

mathematically treatable in the forward and back propagation

Test utteranceEnrollment utterance

Res-BGRU model

L2-Norm

Cosine Similarity

Fig. 3. Schematic diagram of a verification trial.

algorithm, with some mathematical manipulation, 2 has the

following equivalent form:

L “ }SST ´ 2YYT ` 1}2F (3)

From the above analysis, we can see that our proposed affin-

ity loss has following advantages.: 1) Compared to commonly

used softmax loss in classification tasks which generates the

speaker posterior probability distribution, the affinity loss

directly optimizes the similarities between speaker embed-

dings. Thus an end-to-end trainable system is constructed. 2)

Compared with other pair-wise losses (such as the contrastive

loss in [9]) which only measure the similarity between a single

manually selected pair in training stage, our proposed affinity

loss makes use of all speaker embedding pairs which provides

more supervision information to achieve better robustness. 3)

Compared to the generalized end-to-end loss [18] proposed

recently, our proposed affinity loss does not rely on the pair

selection strategy and the mini-batch training data can be

selected randomly. This property makes the network training

more flexible and stable.

C. Verification Process

After the Res-BGRU is well trained, it works as a feature

extractor to generate the utterance-level speaker embeddings.

In this study, the cosine similarity is used to measure the

similarity score between two speaker embeddings. The final

similarity score will be compared against a pre-defined thresh-

old. If the final similarity score exceeds the threshold, the

system will accept the claimed speaker and reject otherwise.

III. EXPERIMENTS AND ANALYSIS

In this section, we first describe the dataset used for the

experiments, and then report and analyze the experimental

results accordingly.
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Epoch 1 6 14 34 74
2YYT-1EER (%) 15.16 11.37 9.83 7.99 5.98

Fig. 4. The visualization of speaker embedding affinity matrix SST at epochs. The depth of the color is proportional to the level of cosine distance (e.g.,
brighter color refers to higher similarity). The rightmost is the target speaker identity affinity matrix 2YYT ´ 1.

TABLE I
ARCHITECTURE OF THE RES-BGRU. T IS THE TOTAL TIME STEP OF THE

INPUT SIGNAL, AND MFM IS MAX FEATURE MAP ACTIVATION FUNCTION.

Layer Input Output Params
BGRU T ˆ 39 T ˆ 512 456K

ResBlock[BGRU] T ˆ 512 T ˆ 512 1182K
BGRU T ˆ 512 T ˆ 512 1182K

ResBlock[BGRU] T ˆ 512 T ˆ 512 1182K
Statistics Pooling T ˆ 512 1024 -

FC1 1024 1024 1049K
MFM 1024 512 -
FC2 512 1024 525K

MFM 1024 512 -
Total - - 5565K

A. Dataset

We evaluate the performance of our method the on Vox-

celeb1 dataset [19] since it is so far the latest and largest public

speaker verification dataset. Specifically, this dataset consists

of about 150,000 utterances from 1251 different celebrities.

Each celebrity has at least 45 utterances with different lengths.

For the speaker verification task, the training set includes

1211 celebrities and 140,664 utterances. The test set comprises

4,715 utterances from 40 celebrities whose names are with an

initial E. The performance is reported in terms of EER.

B. Experiment Setup

The raw features of speech segments consist of 13-

dimensional MFCCs and then appended to 39-dimensional

speech features by their delta and acceleration. To accelerate

the convergence speed, mean and variance normalization are

performed on every feature dimension. For the SU-SV task, the

utterances in the dataset for the SV task are randomly clipped

to 3s during training. The parameter details of our proposed

Res-BGRU system are presented in Table I. We train our Res-

BGRU model by Keras [20]. The batch size is set as 128 and

the weight decay is set to 5e-5 for fully-connected layers. The

RMSprop optimizer is used with an initial learning rate of

0.001. Learning rate is decayed if the validation loss has not

decreased. We use Xavier as parameter initializer for all layers.

In order to get a comprehensive assessment of our proposed

system, the following two state-of-the-art speaker verification

approaches have been included for performance comparison.

i-vector: The i-vector baseline is based on GMM-UBM

Kaldi SRE10 V1, as described in [21]. The UBM is composed

of 2048 Gaussian components. The dimension of i-vectors is

set to 400 and the i-vector extractor is trained by using 60-

dimensional MFCC speech features. LDA and PLDA are taken

as the scoring functions. All the training dataset is used to train

the UBM, T-Matrix and PLDA

x-vector: The x-vector baseline is also implemented by the

Kaldi toolkit. Five layers of TDNN with the ReLU activation

function are used as the frame-level feature extractor and a

statistics pooling layer is used to aggregate all the frame-level

features. In the end, two fully connected layers are designed

to produce the segment-level feature [22].

C. Performance versus epoch number

To observe the performance of our end-to-end system on

SU-SV task, one example of the speaker embedding affinity

matrix estimated at different epoch is given in Fig. 4. It can be

seen that EER goes down and SST gets close to 2YYT ´ 1
with the increase of the epoch. This process indicates that,

when the model goes to convergence, the speaker embeddings

of the same speaker become similar, while the speaker em-

beddings of different speakers become dissimilar. As a result,

we can conclude that our Res-BGRU model trained with the

affinity loss increases the discrimination of learned speaker

embeddings.

D. Results for Short Utterance Speaker Verification

This experiment evaluates the EER performance versus the

utterance length. In the verification trial, the duration of both

the enrollment and test utterances is set to 3, 6 or 9 seconds.

Compared to the large-scale dataset, the training data used is

still insufficient. To avoid suboptimal local minima in training,

we take a two-stage policy for training Res-BGRU. First, the

pre-training is conducted with softmax loss. Second, the fine-

tuning is carried with the affinity loss or triplet loss. Both

stages are trained with the same dataset.

From Table II, it is encouraging to see that, for both 3s-

3s 6s-6s and 9s-9s conditions, our Res-BGRU system with

affinity loss (Res-BGRU (AL)) outperforms other compared

approaches. Our Res-BGRU system with softmax loss (Res-

BGRU (SL)) ranks second. Obviously, i-vector+LDA and
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TABLE II
EER (%) PERFORMANCE UNDER 3S-3S, 6S-6S AND 9S-9S CONDITIONS.

3S-3S, 6S-6S AND 9S-9S RESPECTIVELY DENOTE BOTH LENGTHS OF

ENROLLMENT, AND THE TEST UTTERANCES OF A VERIFICATION TRIAL

ARE IN 3, 6 AND 9 SECONDS.

System 3s-3s 6s-6s 9s-9s
i-vector+LDA 19.08 13.70 12.10

i-vector+PLDA 12.11 7.88 7.17
x-vector+PLDA 7.78 6.67 5.71
Res-BGRU (SL) 6.37 5.80 4.77

Res-BGRU (Triplet Loss) 6.12 5.67 4.57
Res-BGRU (AL) 5.98 5.52 4.30

i-vector+PLDA are not competitive under short utterances

conditions. The results also confirm that the deep models

have a better capability to learn a more discriminative feature

representation than the statistical model-based methods, espe-

cially for short utterances. Specifically, when using softmax

loss for training, the Res-BGRU (SL) system achieves a

relative EER improvement of 18.12%, 13.04% and 16.46%

over x-vector+PLDA in 3s-3s, 6s-6s and 9s-9s conditions

respectively, which indicates that our end-to-end system has

more advantages in feature extraction under short utterance

conditions.

Compared with Res-BGRU (SL), the Res-BGRU (AL)

system gains 6.12%, 4.83% and 9.85% relative EER im-

provement in 3s-3s, 6s-6s and 9s-9s conditions respectively,

which demonstrate that the affinity loss is capable of reducing

the intra-speaker compactness and increasing the inter-speaker

separateness under short utterance conditions. Res-BGRU(AL)

performs better than Res-BGRU(Triplet Loss). This suggests

that using the information of all pairs in a data batch is able

to provide more supervision information than using a single

manually selected pair. Moreover, from the intrinsic idea in

developing our Res-BGRU and affinity loss, we believe that

the performance for the SU-SV task could be further improved

by training the network with longer utterances.

IV. CONCLUSIONS

We have presented an effective end-to-end SU-SV system

to improve the performance of the speaker verification for

short utterances. In our Res-BGRU model, the BGRU is

employed to deal with the variable-length speech segments and

the MFM is used in the forward layers to filter out speaker

irrelevant information. A novel loss, i.e. the affinity loss,

has been proposed to leverage the correlations of all speaker

embeddings to maximize the intra-speaker compactness and

inter-speaker separateness. This leads to an efficient training

process. Experiments show that our proposed system achieves

significant improvements over the state-of-the-art baselines
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