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Abstract—We introduce our machine-learning method to re-
move the fog and haze in image. Our model is based on Cy-
cleGAN, an ingenious image-to-image translation model, which
can be applied to de-hazing task. The datasets that we used
for training and testing are creatd according to the atmospheric
scattering model. With the change of the adversarial loss from
cross-entropy loss to hinge loss, and the change of the recon-
struction loss from MAE loss to perceptual loss, we improve the
performance measure of SSIM value from 0.828 to 0.841 on the
NYU dataset. With the Middlebury stereo datasets, we achieve
an SSIM value of 0.811, which is significantly better than the
baseline CycleGAN model.

I. INTRODUCTION

Outstanding work has been accomplished in image de-
hazing in recent years through generative adversarial network
(GAN) [1]. GANs [2] have excelled in various image-to-image
translation tasks, e.g. super-resolution [3] and image style
transfer [4]. The success of the GAN model can be attributed
to the concept of adversarial loss which constrains the images
to resemble the real images as much as possible. Pix2Pix [5]
is one of the most well-known GAN-based application via
supervised learning of image-to-image translation.

The training process of GAN can be challenging as it
aims to train the generator and discriminator network at the
same time and each of them trying to oppose the other.
However, GANs are a powerful tool that can be used to learn
strong image priors and perform image translations. In general,
the architecture of a generative adversarial neural network
comprises of a generator and a discriminator. The role of the
generator is to perform transformations on an initial noise and
generate images by performing operations on it. This image is
then judged to be fake or real by the discriminator. Thus, the
generator is assigned the task of deceiving the discriminator
based on how the discriminator reacts to the image it generates.

Unsupervised learning to perform image-to-image transla-
tion aims at obtaining a correspondence between the source
domain and target domain, instead of focusing on establishing
a relationship between an image to a target image. Considering
that obtaining pairwise image data is not an easy task, it is
not realistic to always have an image-to-image mapping for
training. However, it is more realistic to produce a dataset
comprising of images in two different domains without having
to find a one-to-one correspondence between each image in the
domains. It is for this reason that unsupervised translation is

garnering a lot of interest in recent times. CycleGAN [6] and
MUNIT [7] both perform unsupervised image-to-image trans-
lation. The main contribution of our work is to use CycleGAN
as baseline model and apply different loss functions for image
de-hazing.

II. RELATED WORK

A. Generative Adversarial Networks

Generally, it is common to adopt vanilla GAN to ensure that
the images generated by the model have a striking resemblance
to the actual data. In recent years, more and more objective
loss functions have been proposed, such as the least square
GAN with the squared-error loss [8], and the WGAN with
the Wasserstein distance [9] and WGAN-GP [10], [11], [12].
Methods have been proposed to improve WGAN-GP.

Hinge loss is often used for binary classification for max-
imizing the margin of classification. Thus, it can be used to
train a discriminator in GAN [13], [14], [15], [16], [17]. In
our experiment, we adopt hinge loss for our adversarial loss
function.

B. Neural Style Transfer

Neural Style Transfer [4] is a prominent way that performs
translation from one image to another. The content of one
image is subsumed into the style of another image. Generally,
deep convolutional networks are used to obtain the style code
and the content code of the image. Traditional techniques
use a single example to obtain the style of the image. The
goal, however, is to utilize a collection of images to establish
heuristics to perform translation from one domain to the target
domain.

C. Image De-hazing

With the success of the dark channel prior [18], image de-
hazing problems can be solved without deep learning methods.
Recently, deep learning techniques have been successfully
introduced to perform the task of de-hazing. In [1], an end-
to-end model takes the hazy image as input and produces a
transmission matrix as output, which is used to remove the
haze. Similarly, techniques have been deployed that perform
de-hazing at night which has different requirements. This work
takes inspiration from methods devised in the past to carry out
de-hazing with GAN [19].
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III. LOSS FUNCTION

Our work aims to learn the representations between the clear
scene and the hazy scene. We assume that the former condition
is the distribution of domain A, and the latter is domain B. The
goal is to learn generators GA2B and GB2A such that GA2B(·)
is hard to distinguish from domain B, and vice versa. The loss
function takes the form of

L = LGAN︸ ︷︷ ︸
adversarial loss

+λ · LR1
+ γ · LR2︸ ︷︷ ︸

reconstruction loss

(1)

where λ and γ are tunable parameters. In our experiment we
set λ = 10 and γ = 5× e−6.

A. Adversarial Loss

In this work, we use hinge loss as our proposed adversarial
loss to update the generators and discriminators. Hinge loss
has been adopted to be a loss function of SVM [20], as its
concept is to find a largest margin for a binary classification
problem. Specifically, the loss function for the discriminator
is

LD(x, x′) =

E[max(0, 1−DA(x))] + E[max(0, 1 +DA(GB2A(x′))]

+ E[max(0, 1−DB(x′))] + E[max(0, 1 +DB(GA2B(x))]
(2)

B. Reconstruction Loss

Images translated to another domain should be translated
back to the original images via reconstruction process, which
induces reconstruction loss. As depicted in Fig. 1, the model
incorporates two-way cycle consistency. For one direction

x→ GA2B(x)→ GB2A(GA2B(x)) ≈ x

For the reversed direction

x′ → GB2A(x′)→ GA2B(GB2A(x′)) ≈ x′

In this work, we measure the similarity between the ground-
truth image and the reconstructed image by the combination
of the perceptual loss [21] and structural similarity (SSIM)
loss, rather than MAE loss or MSE loss.

1) SSIM Loss: SSIM is used for measuring the similarity
between images. Image quality evaluation of SSIM has more
correspondence toward the judgement of human intuition.
Equation 3 shows the computation of SSIM, where µ and σ
denote the mean and standard deviation, and σxy denotes the
covariance of x and y.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3)

C1 and C2 are two constants [22]. We then use reconstruction
loss LR1

as

LR1
(x, x′) = (1− SSIM(x,GB2A(GA2B(x)))

+ (1− SSIM(x′, GA2B(GB2A(x′)))
(4)

2) Perceptual Loss: Perceptual loss function is inspired by
EnhanceNet [23]. The main idea of EnhanceNet is comparing
images in a feature space rather than in a pixel space. With
the perceptual loss, we not only speed up the convergence but
also have more similar representation between the generated
images and the reconstructed images. We believed that by
extracting the features from the 2nd and 5th max-pooling layer
can represent the different information from the beginning
layer and the deep layer. The perceptual loss is

LR2
(x, x′) = ‖Φ(x)− Φ(GB2A(GA2B(x)))‖22

+ ‖Φ(x′)− Φ(GA2B(GB2A(x′)))‖22
(5)

where Φ denotes the VGG19 [24] feature extractor from 2nd
and 5th pooling layers. The part of loss function related
generation is

LG(x, x′) =− E[DA(GB2A(x′))]− E[DB(GA2B(x))]

+ λLR1
(x, x′) + γ ∗ LR2

(x, x′)
(6)

IV. NETWORK ARCHITECTURE

A. Generator
The construction of the generator can be referred to [4],

which provides the outstanding task of style transfer. We
can view the generator as the comprising of the encoder,
transmission layers, and the decoder as the image become
up-sampling and down-sampling to the original size. Detailed
construction of the generator that we used in our experiment
is shown in Table I.

TABLE I
NETWORK ARCHITECTURE OF THE GENERATOR

input size = 256 × 256 × 3
layer name output size feature map size
conv1 256 × 256 7× 7, 32, s=1
Instance Normalization [25]
Relu [26]
conv2 128 × 128 3 × 3, 64, s=2
Instance Normalization
Relu
conv3 64 × 64 3 ×, 128, s=2
Instance Normalization
Relu

Residual Blocks(9)
64 × 64
Instance Normalization
Relu

3 ×, 128, s=1

deconv1 128 ×128 3 × 3, 64, s=2
Instance Normalization
Relu
deconv2 256 × 256 3× 3, 32, s=2
Instance Normalization
Relu
conv4 256 × 256 7 × 7, 3, s=1
Tanh

B. Discriminator
The construction of the discriminator can be referred to

PatchGAN [27] [5]. This kind of design not only can ef-
fectively reduce the parameters of the discriminator but also
can keep the performance compared to the fully convolutional
fashion. Table II shows the detailed settings of the discrimi-
nator that we used in our experiment.
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Fig. 1. Reconstruction Loss

TABLE II
NETWORK ARCHITECTURE OF THE DISCRIMINATOR

input size = 256 × 256 × 3
layer name output size feature map size
conv1 128 × 128 4× 4, 64, s=2
Leaky Relu
conv2 64 × 64 4 × 4, 128, s=2
Instance Normalization
Leaky Relu [28]
conv3 32 × 32 4 ×4, 256, s=2
Instance Normalization
Leaky Relu
conv4 32 × 32 4 × 4, 512, s=1
Instance Normalization
Leaky Relu
conv5 32 ×32 4 × 4, 1, s=1

V. EXPERIMENTS AND RESULTS

The model is trained for 500 epochs with a batch size of 1.
The discriminator and the generator are both trained using the
Adam optimizer function. The initial learning rate is 0.0001,
and the discriminator has the 4 times larger learning rate than
the generator. The hyper-parameter beta1 and beta2 values for
the optimizer function is 0.5 and 0.9, respectively. The weight
of the reconstruction loss λ is 10 and γ is set to 5× e−6.

We have a baseline CycleGAN with the same training con-
ditions as our model. Recently, CycleGAN has the updating
version which adopts least-square GAN [8] for adversarial loss
to improve the performance. We then compare this updated
version with our model in the following experiments.

A. NYU Datasets

Our training set for domain A is NYU dataset [29] ground-
truth image. This dataset consists of 1,449 ground-truth image
and provides the pairwise depth image. Our training set for
domain B is the NYU dataset immersed in a sea. Both of the
training set A and B are also used for the test data to evaluate
the quality of the image that generated by the model. We create
our training set B by an atmospheric scattering model

I(x) = J(x)t(x) +A(1− t(x)) (7)

where I represents generated foggy images, J represents the
ground-truth images, t is the transmittance rate, and A is the
RGB value of the atmosphere light. We relate the transmittance
rate to the depth image. Fig. 2 shows how we produce our
datasets that simulate the subaqueous scene. Generally, the

transmittance rate under the water is usually lower, we then
multiply the transmittance rate by 0.7 to achieve the more
similar scene with the subaqueous scene in reality. For the gray
scale value of atmosphere light, we have the value between
0 to 1. We randomly set the red light value to the floating
number between 0.3 to 0.5, green light and blue light value
set to the floating number between 0.6 to 0.8.

B. Results of NYU Datasets

We compare our model with CycleGAN [6] and MU-
NIT [7], both well-known for unsupervised image-to-image
translation.

MUNIT model is trained for 500 epochs with a batch size
of 1. The discriminator and the generator are both trained
using the Adam optimizer function. The initial learning rate
is 0.0001. The beta1 and beta2 values for the optimizer
function is 0.5 and 0.9, respectively. The weight of the image
reconstruction loss is 10, the weight of the style reconstruction
loss is 1, and the weight of the content reconstruction loss is
1. The type of GANs employed for adversarial loss handling
is least square GAN [8].

TABLE III
COMPARISON WITH DIFFERENT GANS

CycleGAN MUNIT Ours
PSNR 20.95 21.14 20.41
SSIM 0.828 0.797 0.841

According to Table III , we can achieve the close value for
PSNR compared with others, and our model has the apparently
best SSIM among three models. We have the same settings
as we manufacturing the NYU dataset for condition 1. The
transmittance rate is multiplied by 0.7. And for condition 2,
we multiply the transmittance rate by 0.3, which produces the
hazier subaqueous scene. Fig. 3 shows the results of our model
compared with other models. We can observe that our pictures
has clearest result after de-hazing.

C. Middlebury Stereo Datasets

Our test data is the Middlebury stereo dataset collected from
different years and we have 35 datasets in total. We have 6
datasets for year 2001 [30], 2 datasets for year 2003 [31], 6
datasets for year 2005 [32], and 21 datasets for year 2006 [32].
For 2005 datasets the image ”Computer, Drumstick, Dwarves”
are excluded because of the withheld of the truth disparities.
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Fig. 2. Dataset manufactured processing. The atmospheric scattering model is in equation 7.

We manufacture the data with two conditions. We have the
same settings as we creates the NYU dataset for condition 1.
The transmittance rate is multiplied by 0.7. And for condition
2, we multiply the transmittance rate by 0.3, which produces
the hazier subaqueous scene. In this series of the experiment,
we hope to examine how will the model react to the data that
is unseen in the training set.

D. Results of Middlebury Stereo Datasets

We have two simulation for Middlebury stereo dataset
experiment. We test the Middlebury dataset with the same
weights that we train by the NYU dataset. Table IV shows the
result of the manufactured Middlebury dataset for condition 1
mentioned above.

TABLE IV
RESULT OF MIDDLEBURY DATASET CONDITION 1

CycleGAN MUNIT Ours
PSNR 16.34 11.101 16.04
SSIM 0.767 0.399 0.811

Table V shows the result of the manufactured Middlebury
dataset for condition 2 mentioned above.

TABLE V
RESULT OF MIDDLEBURY DATASET CONDITION 2

CycleGAN MUNIT Ours
PSNR 16.453 10.971 15.84
SSIM 0.77 0.393 0.81

Although our PSNR value decreases, we sill have the
highest SSIM quality remained even dealing with the data that
is unseen in the training set. We can also observe that our
model has the smallest difference of the SSIM value among

three models. Both CycleGAN and MUNIT have obviously
value decreased of SSIM value, especially for MUNIT. This
explains that MUNIT is better for the tasking of one to multi-
domain translation but it is not suitable for our subaqueous de-
hazng mission. We prove that our model can not only produce
the highest standard of the SSIM quality but also learn the best
image translation ability when facing to the different data. Fig.
4 and Fig. 5 show the different degrees of the fog applies
on the Middlebury dataset and the de-hazed results of our
model compared with others. Fig. 4 shows that our model
can generate the clearest scene of the baby’s face and evident
texture of the background. Fig. 5, shows that when facing to
the heavier haze, our model and CycleGAN has no obvious
difference but our background color has the better recovery
with the ground-truth data.
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Fig. 3. Result of NYU dataset

Fig. 4. Result of Middlebury dataset condition 1

Fig. 5. Result of Middlebury dataset condition 2

VI. CONCLUSIONS

In this work, we use CycleGAN model architecture and
apply our proposed loss combination. We observe that our
system produces images with high SSIM and achieves bet-
ter representation for unseen test data. The success can be
attributed to the usage of SSIM loss, which emphasizes on
preserving the information of the structure similarity. It can
also be attributed to the usage of hinge loss and perceptual
loss, and our model can generate the clear background texture
and similar colors with the ground-truth data. We conclude
that our model can solve the subaqueous scene de-hazing task
with not only the statistic evaluation value, such as PSNR,

SSIM, but also the results shown in Fig. 3 – 5, which can be
evaluated by the human’s subjective vision.
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erative adversarial networks. In International Conference on Machine
Learning, pages 214–223, 2017.

[10] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C Courville. Improved training of wasserstein gans. In
Advances in Neural Information Processing Systems, pages 5767–5777,
2017.

[11] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On
convergence and stability of gans. arXiv preprint arXiv:1705.07215,
2017.

[12] Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and Liqiang Wang.
Improving the improved training of wasserstein gans: A consistency
term and its dual effect. arXiv preprint arXiv:1803.01541, 2018.

[13] Jae Hyun Lim and Jong Chul Ye. Geometric gan. arXiv preprint
arXiv:1705.02894, 2017.

[14] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
Spectral normalization for generative adversarial networks. arXiv
preprint arXiv:1802.05957, 2018.

[15] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus
Odena. Self-attention generative adversarial networks. arXiv preprint
arXiv:1805.08318, 2018.

[16] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale
gan training for high fidelity natural image synthesis. arXiv preprint
arXiv:1809.11096, 2018.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[18] Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze removal
using dark channel prior. IEEE transactions on pattern analysis and
machine intelligence, 33(12):2341–2353, 2010.

[19] Xitong Yang, Zheng Xu, and Jiebo Luo. Towards perceptual image de-
hazing by physics-based disentanglement and adversarial training. In
Thirty-second AAAI conference on artificial intelligence, 2018.

[20] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.
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