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Abstract—Microphone array beamforming has been approved
to be an effective approach for suppressing adverse interferences.
Recently, acoustic beamformers employing neural networks (NN)
for time-frequency (T-F) mask prediction, termed as Mask-BF,
have received tremendous interest and shown great benefits as a
front-end for distant automatic speech recognition (ASR). How-
ever, our preliminary experiments using Mask-BF for ASR task
show that the mask model trained with only simulated training
data underperforms when the real-recording data appears in the
testing stage, where a data mismatch problem occurs. In this
study, we aim at reducing the impact of the data mismatch on
the mask model. Our research is quite intuitive that the real-
recording data can be used together with the simulated data
to make the mask model more robust against data mismatch
problem. Specifically, two bi-directional long short-term memory
(BLSTM) models, are designed as a teacher mask model and
a student mask model, respectively. The teacher mask model is
trained with simulated data, and it is then employed to generate
the soft mask labels for both simulated and real-recording data
separately. Then, the simulated data and the real-recording data
with generated soft mask labels form the new training data to
train the student mask model. As a result, a novel T-S mask BF is
developed accordingly. Our T-S mask BF is evaluated as a front-
end for ASR on the CHiME-3 dataset. Experimental results show
that the generalization ability of our T-S mask BF is enhanced
where we obtain relative 4% word error rate (WER) reduction
compared to the baseline Mask-BF in the real-recording test set.

I. INTRODUCTION

Distant automatic speech recognition (ASR) has attracted
a tremendous amount of attention in recent years with the
growing demands for many applications, such as interactions
among people and smart home devices by speech [1, 2].
However, for far-field practical applications, background noise
and reverberation degrade speech quality as well as the perfor-
mance of the ASR system, especially under low signal-to-noise
ratio (SNR) conditions.

The array beamforming is an efficient multi-channel speech
enhancement approach, where the minimum variance dis-
tortionless response (MVDR) beamformer and generalized
Eigenvalue (GEV) beamformer are the two most popular
methods [3, 4]. The performance of the MVDR and GEV
heavily depends on the estimation of the correlation matrix
of the target speech as well as the correlation matrix of the
interferences [5]. Many researches [1, 3] show that there are
many constraints on estimating the good correlation matrices,
such as array geometry, the distance between the speaker, and
the direction of arrival (DOA) of the target speaker. It is clear

that for real-life applications where the acoustic environments
are unknown, complicated, and time-varying, the traditional
beamforming techniques show poorer generalization capacity.
Motivated by the outstanding performance of deep neural net-
works for ASR task, recently, acoustic beamforming technique
based on deep learning has been proposed [6, 7] which is data
driven and does not subject to these constraints. Moreover,
learning-based acoustic beamforming methods have shown
their outstanding capacity in dealing with real-world far-field
acoustic environment and can be viewed as a general beam-
former which has much higher application value. For example,
in CHiME-3 and CHiME-4 challenges [8], the learning-based
T-F masking models have been developed for beamforming
[9, 10], which achieve the state-of-art. In [5], a BLSTM mask
model has been designed and trained. In this study, researchers
treat the multi-channel signals separately where one speech
mask and one noise mask are learned for each channel’s signal.
Finally, these masks are combined to generate the final mask
by median pooling. The beamforming weights are computed as
the principal generalized eigenvector of the speech and noise
covariance matrices.

In principle, the key to the learning-based acoustic beam-
forming methods is to learn a monaural time-frequency (T-F)
mask model using deep neural networks [1, 11]. Then the
spatial covariance matrices of target speech and noise can
be estimated for beamforming more accurately. Therefore,
training a good T-F mask model is essential to perform
beamforming efficiently. Literature study shows that the state-
of-art T-F mask models are trained with parallel simulated
data and tested with real-recording data, which leads a data
mismatch problem between the training and testing conditions
[12, 13], such as testing in the real acoustic environment.
Moreover, through experiments, it is noted that there are many
factors affect the performance of the T-F mask models, such
as the level of similarity between the simulated and real-
recording data, different acoustic scene conditions in training,
development and testing set.

In this paper, we propose to use the teacher-student (T-S)
learning scheme [14, 15, 16] to utilize the real-recording data
in the training stage of a BLSTM mask model to reduce the
impact of the data mismatch for our beamformer, which is
termed as T-S mask BF approach. Firstly, we propose to train
a teacher mask model (TMM). This TMM takes a magnitude
spectrum of the simulated noisy signal as input and predicts
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Fig. 1. Diagram of mask-based acoustic beamforming

masks of speech and noise, respectively. Since there are no
labels of the real-recording data, we make use of the well-
trained TMM as the label generator to predict the soft mask
labels of real-recording data as well as the simulated data
which form new training data. Secondly, a student mask model
(SMM) is trained to predict the mask where both simulated
data and real-recording data with their soft mask labels are
used. In the end, the SMM and TMM is used to generate the
enhanced speech and masked out interference, which helps to
derive a robust beamformer.

The remainder of this work is organized as follows. In
section II, we present the related work of Mask-BF. Section
III describes the proposed approach in detail. Detailed experi-
mental corpus, setups, and results are presented in Section IV.
Finally, the conclusions are summarized in Section V.

II. RELATED WORK

For presentation completeness, the diagram of the baseline
[5] is shown in Fig. 1, which is termed as Mask-BF in this
study since it is a data-driven mask model for improving the
performance of beamforming. Mask-BF consists of two main
blocks: the mask model and mask-based beamforming. The
details will be given in part A and B separately.

A. Mask model

The mask model is trained in a fully supervised manner
to estimate two masks: the speech mask and the noise mask.
In the training stage, the mask model utilizes the simulated
data from the training corpus. The magnitude spectrum of
the noisy speech is taken as the input of the neural network.
The training targets are ideal binary masks (IBM) for speech
IBMXpτ, ωq P t0, 1u and noise IBMN pτ, ωq P t0, 1u. The

TABLE I
CONFIGURATIONS OF BLSTM MASK MODEL

Layer Units Type Activation Dropout
L1 256 BLSTM Tanh 0.5
L2 513 Feedforward 1 ReLU 0.5
L3 513 Feedforward 2 ReLU 0.5
L4 1026 Feedforward 3 Sigmoid 0.0

IBMs at frame τ in frequency bin ω are defined based on the
SNR ratio with thresholding as:

IBMN “

#

1, ||Xpτ,ωq||
||Npτ,ωq|| ă 10thN ,

0, else.
(1)

IBMX “

#

1, ||Xpτ,ωq||
||Npτ,ωq|| ą 10thX ,

0, else.
(2)

where ||Xpτ, ωq|| P Rě0 and ||Npτ, ωq|| P Rě0 are power
spectra of the speech signal and the noise signal at each T-F
unit pτ, ωq, respectively. In order to achieve the best results,
the two threshold thN and thX are manually chosen to be
different from each other.

The BLSTM mask model is trained to estimate the speech
mask MXpτ, ωq and the noise mask MN pτ, ωq at each T-F
bin pτ, ωq, respectively. Table I shows the configurations of
the BLSTM mask model [5]. The BLSTM mask model is
trained by using the binary cross-entropy (BCE) cost function.
Let’s define the total time steps as T and the total number of
frequency bins as W . Then the BCE cost function is given by
[13]:

Loss “BCEpIBMv,Mvq

def
“

1

T

1

W

ÿ

vPtX,Nu

T
ÿ

τ“1

W
ÿ

ω“1

IBMv pτ, ωq logpMv pτ, ωqq

` p1´ IBMv pτ, ωqqlogp1´Mv pτ, ωqq
(3)

where IBMX and IBMN are given in (2) and (1), respec-
tively. MXpτ, ωq and MN pτ, ωq are the estimated masks of
speech and noise, respectively.

In the testing stage, the masks for each channel are predicted
by the BSLTM mask model separately for testing data and then
combined to a single mask by using a median operation.

B. Mask-based beamforming

In the short-time Fourier transform (STFT) domain, the
received noisy signal from multiple microphones can be ex-
pressed as:

Yτ,ω “ Xτ,ω `Nτ,ω (4)

where Yτ,ω , Xτ,ω and Nτ,ω represent STFT of the observed
noisy signal, speech and noise respectively.

A beamformer is adapted to estimate the speech from
observed noisy signal Yτ,ω . The output of the beamformer,
s̃τ,ω , is calculated by:

s̃τ,ω “ wH
ω Yτ,ω (5)
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where superscript H denotes conjugate transpose. The wω

presents the beamforming coefficient vector.
In this study, with the estimated speech mask MXpτ, ωq

and noise mask MN pτ, ωq by BLSTM mask model, spatial
covariance matrices of speech and noise are computed as:

ΦXpωq “
T
ÿ

τ“1

MX pτ, ωqYτ,ωY
H

τ,ω (6)

ΦNpωq “
T
ÿ

τ“1

MN pτ, ωqYτ,ωY
H

τ,ω (7)

These spatial covariance matrices are used to compute
the beamforming coefficient vector wω . Motivated by the
Generalized Eigenvalue (GEV) beamformer are more suitable
than MVDR for reverberant environments [5]. The GEV beam-
former is employed and its beamforming coefficient vector is
calculated by:

wGEV pωq “ argmax
w

wHΦX pωqw

wHΦN pωqw
(8)

This optimization in Eq. (8) is equivalent to solving the
following eigenvalue problem:

 

Φ´1
N pωqΦXpωq

(

wGEV pωq “ λwGEV pωq (9)

where wGEV pωq is the eigenvector of
 

Φ´1
N pωqΦXpωq

(

and
λ is the corresponding eigenvalue.

Finally, following the method proposed in [5], the GEV
beamformer is then further adapted by the blind analysis nor-
malization (BAN), which is able to reduce arbitrary distortion
of GEV beamformer.

III. PROPOSED METHOD

According to the principle of GEV beamformer introduced
in Section II, we note that the estimation of ΦXpωq and
ΦNpωq is the key to obtain a good beamformer for target
speech enhancement, which is directly related to the estimation
of speech and noise masks. Our preliminary experiments using
Mask-BF for ASR task show that the mask model trained
using all simulated training data underperforms when the
real-recording data is used in the prediction stage, where a
data mismatch problem occurs. Motivated by the good results
brought by BLSTM mask model, in this study, we focus on
improving the capability of mask learning by introducing the
real-recording data which is able to alleviate the mismatch
between the training data and the testing data. Our research
motivation is quite intuitive that the real-recording data can be
used together with the simulated data to train a better mask
model. In this work, a Teacher-Student (T-S) learning scheme
is proposed where a teacher mask model (TMM) and a student
mask model (SMM) are designed. The training strategy is
proposed to use both simulated data and real-recording data.
As a result, our developed front-end is termed as T-S mask
BF. Fig. 2 illustrates the framework of the proposed approach.
The details are given in the following context.

Fig. 2. The framework of our proposed Teacher-student mask model (T-S
mask). (a) Feature extraction: Obtain the short-time Fourier transforms (STFT)
of the noisy signals and calculate their magnitude spectra |Y|τ,ω . Use the
magnitude spectrum of ith channel Ymi pτ, ωq as the input of the mask model.
(b) Proposed T-S mask model: The well-trained teacher mask model generates
the estimated speech soft mask labels MTSX and MTRX as well as noise
soft mask labels MTSN and MTRN as additional labels to student mask
model.

A. Teacher mask model (TMM)

The training processes and architecture of the teacher mask
model (TMM) are the same as the baseline (BLSTM mask
model), which are described in Section II. Note that the TMM
is only trained by using simulated training data.

As shown in Fig. 2, in our design, the well-trained TMM
is used as the soft label generator for the real-recording data
as well as the simulated data. Therefore, for the simulated
data, we can get two soft masks: MTSXpτ, ωq P r0, 1s, and
MTSN pτ, ωq P r0, 1s for speech and noise, respectively. For
the real-recording data, another two masks can be generated
as well, which are denoted as MTRXpτ, ωq P r0, 1s, and
MTRN pτ, ωq P r0, 1s. In the end, we can form three different
training data: {simulated noisy data, corresponding IBMs},
{simulated noisy data, corresponding MTSs}, and {real-
recording noisy data, corresponding MTRs}. The example of
these mask labels is given in the (b) of Fig. 2. These training
data will be used to train our student mask model.

B. Student mask model (SMM)

The structure of student mask model (SMM) is the same as
the baseline (BLSTM mask model) described in Section II-A.
In the SMM training stage, we use different cost functions to
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train our SMM with the simulated data and the real-recording
data, respectively.

For the simulated data training, we consider the following
cost functions for speech LSs X and noise LSs N :

LSs X “p1´ πqBCEpIBMXpτ, ωq,MSXpτ, ωqq

` πMSEpMTSXpτ, ωq,MSXpτ, ωqq
(10)

LSs N “p1´ πqBCEpIBMN pτ, ωq,MSN pτ, ωqq

` πMSEpMTSN pτ, ωq,MSN pτ, ωqq
(11)

where MSXpτ, ωq, and MSN pτ, ωq denote the estimated
speech mask and noise mask by SMM, respectively. The
IBMXpτ, ωq and IBMN pτ, ωq are the hard mask labels of
speech and noise, respectively. The hyper-parameter π P r0, 1s
is the linear interpolation weight. For soft mask labels, the
mean squared error (MSE) between the inferred mask predic-
tion and the target soft mask label is used as the cost function.
The MSE is defined as follow:

MSEpMTSvpτ, ωq,MSvpτ, ωqq
def
“

1

T

1

W

ÿ

vPtX,Nu

T
ÿ

τ“1

W
ÿ

ω“1

}MSvpτ, ωq ´MTvpτ, ωq}
2
2

(12)

The final cost function of SMM for simualated data, termed
as LSs is expressed as:

LSs “ pLSs X ` LSs N q{2 (13)

For real-recording data training, in our proposed T-S mask
model, the soft mask labels of the real-recording data enable
be obtained from TMM. The cost function for SMM on real-
recording data, termed as LSr, is defined as:

LSr “rMSEpMTRXpτ, ωq,MSXpτ, ωqq

`MSEpMTRN pτ, ωq,MSN pτ, ωqqs{2
(14)

where the MSE cost function is defined in Eq. (12).
The SMM has been trained on the simulated data and

real-recording data with loss LSs and loss LSr, respectively.
When the SMM predicts the speech and noise mask for each
microphone channel, we calculate the beamforming coefficient
vector by using the method shown section II-B.

IV. EXPERIMENTS

We evaluate the proposed Teacher-Student mask model for
beamforming (T-S mask BF) approach on ASR tasks using the
CHiME-3 corpus [8]. The T-S mask BF is used as a front-end
for the ASR system.

A. Corpus

The CHiME-3 corpus includes real-recording data and sim-
ulated data generated by artificially mixing the incorporations
of Wall Street Journal (WSJ) corpus sentences spoken with
4 different noisy environments including cafe (CAFE), the
street junction (STR), public transport (BUS) and pedestrian
area (PED). This corpus is recorded by using a 6-channel
microphone array attached to a tablet device. The corpus is

divided into 3 respective subsets. The first one is the training
set, composing 8738 (1600 real + 7138 simulated) noisy
utterances. The second one is the development set (dt 05),
containing 3280 (1640 real + 1640 simulated) noisy utterances.
The third one is the evaluation set (et 05), including 2640
(1320 real + 1320 simulated) noisy utterances.

B. Speech Recognition

To facilitate the comparisons, the original baseline back-
end of CHiME-3 is used. It features two different acoustic
models (AM). One is based on a Gaussian Mixture Model
(GMM) AM [17, 18] and the other is based on a deep
neural network (DNN) AM [8], which contains 7 layers with
2048 Sigmoid units. Both of them are trained by using Kaldi
speech recognition toolkit [19]. For the language model (LM),
a standard WSJ 5K word tri-gram LM [8] is uesd in all
experiments.

C. Experimental setups and results

As frontend processing, we compare the proposed approach
T-S mask BF with another two beamforming algorithms. The
first one is the weighted delay-and-sum beamformer. It is
implemented using the BeamformIt! toolkit [20] where the
DOA estimate is obtained from GCC-PHAT [3] and a two-step
Viterbi post-processing technique is used to avoid instabilities.
The second one is proposed by Heymann et al. [5] described
in Section II-A.

The results of these ASR experiments are shown in Table
II. From Table II, the results reveal that all of the Mask-BF
methods outperform that of the BeamformIt by a large margin
for the real-recording data, despite sharing the same back-
end. Meanwhile, we can see that the ASR performance of the
student mask models with different hyper-parameters π are
better than the ASR performance of the teacher mask model
(original BLSTM mask model) as expected. Specifically, for
the GMM AM, adding the Teacher-Student (T-S) learning
scheme results in relative the best improvement rate of the
real-recording evaluation data up to 4.3%. For the DNN AM,
the proposed T-S mask BF approach can obtain relative 3.9%
WER the most reduction compared to the teacher mask model
for the real-recording evaluation data. This means that utilizing
T-S learning scheme to estimate mask can reduce the impact
of the data mismatch of Mask-BF by pooling real-recording
data with simulated data in the SMM training stage. Thus, the
proposed T-S mask BF approach is able to generalize better
in real-life practical applications.

We also compared our proposed SMMs with different values
of hyper-parameter π. The purpose of this experiment is to
find out that using which linear interpolation weight can make
SMM achieve best ASR performance. From Table II (rows 5-
14) we find that the parameter choice of π “ 0.95 gives the
best performance amongst the different values we tried.

V. CONCLUSION

Motivated by the data mismatch problem for Mask-BF
results from training simulated data and testing real data,
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TABLE II
OVERVIEW OF THE AVERAGE WERS (%) FOR DIFFERENT BEAMFORMING METHODS ON THE CHIME-3

Parameters Front-end Back-end
DEV EVAL

simu real simu Real

1 ´ BeamformIt GMM 11.64 20.53 12.79 37.31

2 ´ BeamformIt DNN 9.43 20.16 11.92 33.26

3 ´ Teacher GMM 10.8 11.77 11.59 17.97

4 ´ Teacher DNN 9.04 10.83 11.34 16.87

5 π “ 0.00 Student GMM 10.77 11.61 11.48 17.54

6 π “ 0.35 Student GMM 9.87 11.43 11.19 16.38

7 π “ 0.65 Student GMM 10.26 11.05 11.28 15.64

8 π “ 0.95 Student GMM 8.38 9.31 9.86 13.7

9 π “ 1.00 Student GMM 8.4 9.37 9.89 13.79

10 π “ 0.00 Student DNN 8.96 10.78 11.07 16.36

11 π “ 0.35 Student DNN 8.61 10.39 10.54 15.8

12 π “ 0.65 Student DNN 8.83 10.1 10.75 14.83

13 π “ 0.95 Student DNN 7.71 8.9 9.08 12.97

14 π “ 1.00 Student DNN 7.72 8.96 9.13 13.09

we propose a teacher-student learning scheme for mask-based
acoustic beamforming (T-S mask BF). In our T-S mask BF,
the well-trained teacher mask model (TMM) is used as the
soft label generator for both the real-recording data and the
simulated data separately, so that the real-recording data can
be pooled with the simulated data for mask model. Then, a
student mask model (SMM) is trained to predict the mask
where both simulated data and real-recording data with their
soft mask labels generated by TMM are used. Experimental
results show that our proposed T-S mask BF approach can
make the SMM more robust against data mismatch problem
and improve the performance of ASR.
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