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Abstract—The conclusion that ASR for children's 

speech is especially difficult compared to adult was given 

by the robotics community from recent works. Challeng-

es on Children's speech recognition mainly due to the 

increased variability in acoustic and linguistic correlates 

depending on a young age. This work focused on the 

recognition of oral English spoken by Chinese children 

aging six to twelve. Experiments were conducted on: (1) 

Speaker Normalization algorithms, including Cepstral 

Mean and Variance Normalization (CMVN) and Vocal 

Tract Length Normalization (VTLN) techniques; (2) 

Acoustic models adapting techniques, such as Maximum 

Likelihood Linear Transform (MLLT) and Speaker 

Adaptive Training (SAT) based on Constrained MLLR; 

(3) Different acoustic models, GMM-HMM, DNN-HMM, 

CNN-DNN; (4) Training criterion, with frame-level 

training such as Cross entropy (CE), and se-

quence-discriminative training (SDT) such as MMI, 

MPE and sMBR were conducted in this paper. The re-

sults included: (1) with the increase of age, the variability 

of children's pronunciation decreased significantly; (2) 

the convolution on the frequency axis has a great per-

formance contribution (34.72%) to the variability of 

children over the baseline system. 

I. INTRODUCTION 

Speech recognition has become an indispensable 

part of our life. ASR system has been applied in a 

range of fields, such as education, communication, 

human-computer interaction and translation. Compar-

ing with the dramatically improved ASR for adults 

which have been studied for decades [1][2][3][4][5], 

children's speech recognition is facing huge challenges 

due to the rapid physical development of children and 

the lack of language skills, especially at a very young 

age [6][7][8][9][10][11]. Therefore, it is necessary to 

address the challenges brought by variability in chil-

dren's speech. 

The variability in acoustic mainly comes from the 

developmental changes associated with vocal tract 

growth. On the linguistic side, it is related to children's 

proficiency in language skills, for example, limited 

vocabulary, lack of clarity in pronunciation and 

grammatical structure. 

Much has been done in the past to analyze the 

acoustic characteristics of children’s speech. Acoustic 

variability in the children’s speech can be attributed to 

three major factors (i) the shift of overall spectral con-

tent and formant frequencies for children [12], (ii) 

high within-subject variability in the spectral content, 

which affects formant locations [8], (iii) high in-

ter-speaker variability observed across age groups, due 

to developmental changes, especially vocal tract [13]. 

S. Lee, A. Potamianos, and S. Narayanan found that 

temporal and spectrum parameters of children speech 

were analyzed and studied in detail [8]. 

In recent years, several techniques for dealing 

with acoustic variability have been proposed. Different 

front-end features, such as Perceptual Linear Predic-

tion (PLP) cepstral coefficients, Mel-Frequency 

Cepstral Coefficients (MFCC), and spectrum-based 

filter bank features were studied [12]. In addition, 

[14][15][16][17][18] also investigate several slight 

changes in front-end characteristics. 

Speaker normalization algorithms have been in-

vestigated, for example, Cepstral Mean and Variance 

Normalization (CMVN) and Vocal Tract Length 

Normalization (VTLN) technique were explored in 

ASR. The front-end frequency warping like VTLN 

have been proved useful to deal with the aforemen-

tioned speech variability in children speakers [19][20]. 

In this paper, we concentrate on two aspects of 

speech recognition: front-end processing and acoustic 

modeling for building robust ASR for children. The 

rest of the paper is organized as follows. In Section Ⅱ, 

we give an overview of the databases used to conduct 

the experiments. Section Ⅲ  describes our experi-
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mental setup. Section Ⅳ  presents the recognition 

experiments and their results. Finally, we conclude our 

views in Section Ⅴ. 

II. DATABASES 

The dataset used in this study was collected from 

Xueersi Online School, an APP which contains a func-

tion to collect students’ oral English practice demos. 

The users are mainly from 6 to 12 year’s old including 

boys and girls. There were 3993 children speakers 

included in the 166.06 hours of corpus through grade 1 

to 6. The average number of words per sentence in-

creased as the grade increased. For example, the aver-

age number of words is 6 in grade 1 and 14 in grade 6. 

Table Ⅰ shows the grade distribution of training and 

testing databases. 

TABLE Ⅰ 

GRADE DISTRIBUTION OF TRAINING AND TESTING DATA 

Dataset Grade 1 2 3 4 5 6 Total 

Training-Set 

utterances 13165 12989 14850 14768 12942 13051 81765 

speakers 647 643 605 753 720 625 3993 

hours 20.47 22.33 31.19 30.87 30.12 31.08 166.06 

Testing-Set 

utterances 1000 1000 1000 1000 1000 1000 6000 

speakers 291 275 323 286 312 222 1709 

hours 1.50 1.61 1.80 2.12 2.20 2.32 11.55 

 

III. SPEECH RECOGNITION SETUP 

    We use the open-source speech recognition 

toolkit Kaldi [21] to run the experiments. The sam-

pling frequency of 16 KHz was adopted in the work. 

The standard MFCC features with 13 mel-cepstrum 

coefficients with their first and second order deriva-

tives were used as the front-end features. The MFCCs 

were extracted using 23-channel filter banks using 

frame-length of 25ms and frame-shift of 10ms. 

GMM-HMM system: The HMMs were modeled us-

ing 3 states for non-silence phones and 5 for silence 

phones. A total of 1000 Gaussian densities are shared 

among HMMs. 

Dictionary: The CMU Pronunciation dictionary [22] 

was employed which corresponds to Ameri-

can-English pronunciations and was made compatible 

with our available children data. To account for the 

out-of-vocabulary (OOV) words during training, a 

grapheme to phoneme converter was used to generate 

phoneme transcripts for OOV words. 

Language Model: The language model was training 

using the transcriptions from children's training data 

sets. Reference [15] conducted the experiment using 

unigram, bigram and trigram models, and the trigram 

was proved be the best. Trigram model was training in 

this work. 

IV. RECOGNITION EXPERIMENTS AND RESULTS 

A. Baseline System 

Except for the experimental configuration men-

tioned in section 3 above, Cepstral Mean and Variance 

Normalization (CMVN) was explored in the baseline 

experiments as a standard practice. We modeled and 

evaluated the monophone and triphone models. 

TABLE Ⅱ 

WERS (%) OF MONOPHONE AND TRIPHONE MODEL 

Grade 
Model 

Monophone Triphone 

1 52.58 35.84 

2 49.13 32.77 

3 49.10 31.98 

4 48.51 31.63 

5 44.77 29.20 

6 44.93 28.93 

Average 48.17 31.73 

    Table Ⅱ shows that the Triphone model per-

forms much better and reduces the WER to 31.73% an 

absolute improvement of 16.44% in average over the 

monophone models. Therefore, we used the triphone 

model for subsequent experiments. 

Acoustic model adaptation techniques like Max-

imum Linear Likelihood Transform (MLLT), Speaker 

Adaptive Training (SAT) have shown improvements 

with children speech in the past [19][20]. Because of 

the increase of variability in children speech and the 

LDA working by transforming features, the Linear 

Discriminant Analysis (LDA) was employed to reduce 

the intra-class variability and increase the inter-class 
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variability.  

Table Ⅲ  shows the performance of children 

speech before and after adapting the acoustic model 

adaptation techniques. The model transformed pro-

vides a significant reduction in WER of about 3.13% 

in average absolute compared to the original triphone 

model. Thus we use the adapating triphone model 

(LDA+MLLT+SAT) as the baseline system for sub-

sequent experiments. 

TABLE Ⅲ 

WERS (%) OF ACOUSTIC MODEL AND ADAPTATION 

Grade 
Model 

Triphone LDA+MLLT+SAT 

1 35.84 32.85 

2 32.77 30.15 

3 31.98 28.65 

4 31.63 28.87 

5 29.20 25.42 

6 28.93 25.67 

Average 31.73 28.60 

B. Speaker Normalization Algorithms 

There have been a number of papers that describe 

implementations of Vocal Tract Length Normalization 

(VTLN) that work out a linear feature transform cor-

responding to each VTLN warp factor in recent years 

[23].  

TABLE Ⅳ 

WERS (%) OF BASELINE MODEL AND VTLN MODEL 

Grade 
Model 

baseline VTLN 

1 32.85 30.1 

2 30.15 29.83 

3 28.65 28.11 

4 28.87 27.72 

5 25.42 24.84 

6 25.67 24.66 

Average 28.60 27.54 

In the Table Ⅳ, the VTLN technique achieved a 

word error rate (WER) of 27.54% in average which is 

a 1.06% gain over the raw MFCC features.  

C. Sequence-discriminative training (SDT) 

    Speech recognition is inherently a sequence clas-

sification problem. As such, speech recognizers using 

Gaussian mixture model (GMM) as the emission den-

sity of an HMM achieve state-of-the-art performance 

when trained using sequence-discriminative criteria 

like maximum mutual information (MMI) [24][25], 

boosted MMI (BMMI) [26]and minimum phone error 

(MPE) [27]. In this part, we evaluated the effective-

ness of SDT in children speech corpus. 

Sequence-discrimination training begins with a 

set of alignments and lattices generated by decoding 

training data using unigram LM. 

TABLE Ⅴ 

WERS (%) OF BASELINE, MMI, BMMI AND MPE 

Grade 
Model  

baseline MMI MMI-boost0.05 MPE 

1 32.85 30.78 29.9 29.59 

2 30.15 28.23 27.28 26.55 

3 28.65 25.87 25.16 25.38 

4 28.87 26.07 25.42 25.25 

5 25.42 23.07 23.59 22.96 

6 25.67 22.9 22.6 22.32 

Average 28.60 26.15 25.66 25.34 

Table Ⅴ shows the effectiveness of SDT tech-

niques on children datasets with significant variability. 

Similar to the adults speech recognition [28][29], the 

SDT achieves an improvement of 2.45% absolute on 

MMI, 2.94% absolute on BMMI and 3.26% absolute 

on MPE. 

D. DNN-HMM and DNN-sMBR 

A hybrid DNN-HMM system was employed, 

where the DNN was used to replace the posterior 

probabilities of a traditional GMM system. The 

40-dimensional features are MFCC-LDA-MLLT- 

fMLLR with CMVN, extracted with window 25 msec 

and frame rate 10 msec. The DNN consumes high 

resolution MFCC features with a context of 5 left and 

5 right frames. The DNN has 7 hidden layers, each of 

dimension 1024. The output Softmax layer consists of 

1470 units trained to predict the posterior.  

In addition, sMBR sequence-discriminative 

training [28][29] was explored to train the deep neural 

network to jointly optimize for whole children speech 

sentences, which is closer to the general ASR objec-

tive than frame-level training. 

Table Ⅵ  shows the huge advantage of the 

CD-DNN-HMM over the baseline system trained from 

GMM-HMM with an absolute improvement of 4.81%. 

Further, we have seen the significant contribution of 

CD-DNN-sMBR that has reduced the WER to 21.95% 

on children's datasets. 
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TABLE Ⅵ 

WERS (%) OF BASELINE, DNN-HMM AND DNN-SMBR 

Grade 
Model  

baseline DNN-HMM DNN-sMBR 

1 32.85 26.8 24.22 

2 30.15 25.28 23.08 

3 28.65 23.58 21.35 

4 28.87 24.34 22.78 

5 25.42 21.54 20.18 

6 25.67 21.22 20.07 

Average 28.60 23.79 21.95 

E. CNN-DNN-HMM and CNN-DNN-sMBR 

Convolutional layers provide robustness to vocal 

tract length variation similar to VTLN, however do so 

by normalizing small shifts in frequency rather than 

feature warping [30][31][32][33]. Thus, to tackle the 

large inter-speaker variability and the intra-speaker 

variability, Convolutional layers were employed in the 

deep neural networks. 

The acoustic model is comprised of 2 CNN lay-

ers, where the first CNN layer has 4224 units and the 

second has 2048 units. Both the CNN layers are fol-

lowed by Maxpooling layers. The output of CNN 

model is sent to a 6 layers DNN and the last layer is a 

softmax with 1470 context-dependent triphone states. 

TABLE Ⅶ 

WERS (%) OF DNN-SMBR, CNN-HMM AND CNN-DNN-SMBR 

Grade 
Model  

DNN-sMBR CNN-HMM CNN-DNN-sMBR 

1 24.22 25.14 22.27 

2 23.08 23.52 20.07 

3 21.35 21.39 18.79 

4 22.78 21.08 18.05 

5 20.18 18.27 16.48 

6 20.07 18.14 16.37 

Average 21.95 21.26 18.67 

Table Ⅶ  shows an exhilarating result of the 

CNN-HMM and CNN-DNN-sMBR. Achieving an 

absolute improvement of 3.28% over the DNN-sMBR 

model, the CNN-DNN-sMBR has reduced the WER to 

18.67% in average which is a relative improvement of 

34.72% over the baseline models. 

F. Overall performances of the experiments 

In this part, we combine the results of all the 

aforementioned trials for a more intuitive compari-

son in Fig. 1. The Word Error Rate decreases over 

the level from grade 1 to grade 6. The GMM-HMM 

model using SDT outperformers the baseline system. 

Both DNN and DNN-sMBR performer better than 

the GMM-HMM model, and the CNN-DNN-sMBR 

model achieves the best effectiveness of tackling 

with the variability in children speech recognition. 

 

Fig. 1   Performances of all the experiments. 

V. CONCLUSION 

In this work, we have conducted the experiments 

with children dataset on acoustic model adapting tech-

niques, speaker normalization algorithms, different 

acoustic models and training criterions. We found that 

(1) with the increase of age, the variability of chil-

dren's pronunciation decreased significantly, (2) the 

CNN-DNN-sMBR are proven to be more effective 

(WER, 18.67%) in tackling with the large in-

ter-speaker variability and the intra-speaker variability. 

The convolution on the frequency axis has a great 

performance contribution (34.72%) to the frequency 

variability of children over the baseline system. 
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