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Abstract—Attention based encoder-decoder models have shown
promising performance for various sequence-to-sequence prob-
lems. However, for speech recognition, the very long input speech
consumes a lot of computation and memory resource when
performing encoding and soft attention over the input sequence.
While fixed-rate downsampling is usually employed to reduce
the computation steps, it fails to consider the variable durations
of phonemes. Motivated by this, we propose a differentiable
adaptive downsampling approach which encodes the input se-
quence with a recurrent layer by keeping crucial frames and
discarding redundant frames adaptively in real-time. Therefore,
the proposed downsampling approach can dynamically generate
input hidden representations and is suitable for online end-to-end
speech recognition. Experiments show that our proposed method
can reduce phone error rate (PER) by 7.0% relative without
loss of speed compared with fixed downsampling technique.
In addition, the adaptive encoding makes the model robust to
variable speed speech.

I. INTRODUCTION

Attention based encoder-decoder models [1] are widely

applied in various sequence-to-sequence problems and have

shown competitive performance for tasks like speech recog-

nition [2]. As a new class of speech recognizer, the attention

model combines all components of conventional hybrid sys-

tems — acoustic, pronunciation and language models together

and is optimized jointly with a single objective. Acoustic

models like recurrent neural networks (RNNs) are often em-

ployed as encoder of an attention model which encodes the

input speech frames into hidden representations. Afterwards,

a recurrent decoder equipped with attention mechanism is

usually used to produce output sequence based on the input

representations. With proper output units like character, word

or subword [3], the whole model can be trained in an end-to-

end manner.

However, for online speech recognition, the commonly used

recurrent encoder updates its hidden state whenever a new

frame of the speech sequence is received. This makes the

encoder consume a lot of computation and memory resource

for very long input speech which may degrade the real-time

recognition capability. Further, more resources are demanded

while performing soft (online) attention over the encoded input

sequence. Meanwhile, for decoder these hidden representation-

s are overly precise and contain much redundant information

[4]. Therefore, it is straightforward to introduce downsampling

mechanism into encoder so as to reduce resolution and speed

up learning and inference.

A solution to reduce computation complexity is to skip

some frames that are less important for speech recognition.

This so-called frame skipping technique was first proposed

in [5] for deep neural network (DNN) acoustic models. In

their method, RNN computation is not performed on every

speech frame. Instead, a sequence is processed on part of the

frames, one frame out of every two, for example, and the

predicted label for a non-skipped frame is copied to the next

skipped frame. In [6], this frame skipping idea was utilized

on connectionist temporal classification (CTC) models with

context dependent (CD) phones. Such method was also applied

to RNNs in [7]. Similarly, pooling frames over time [4] and

pyramidal encoding [8] are also introduced in encoder-decoder

models. All these approaches downsample sequences with

fixed steps, process less frames in all utterances, and thus

decrease processing time.

Although frame skipping methods with a fixed skip rate

can accelerate a model, they ignore the variable durations

of phonemes in speech signal. As a consequence, some

short phonemes may be thoroughly skipped, while some

long phonemes still have redundant information. Therefore

this method may introduce degradation of recognition per-

formance. To relieve this problem, dynamic frame skipping

is intended. Different from static frame skipping that always

skips the frames with fixed frame rate, the dynamic frame

skipping is intended to skip the speech frames with variable

frame rate adaptive to different phonemes, different phoneme

durations and speaking speed, etc. In this way, dynamic frame

skipping can remain important information and throw away

spare frames, decreasing processing time more reasonably.

To the end discussed above, in this paper, we propose

an online encoding method which integrates adaptive down-

sampling mechanism into an encoder layer. The adaptive

encoding layer inspects previous layer’s output at each time

step and determines whether to skip the current frame or not.

Although the proposed approach involves hard decisions about

skipping redundant frames and keeping crucial frames during

inference, these decisions can be trained by expectation over

probability instead of sampling, which is a great advantage. In

the following paragraphs, we first introduce the related works

in Section II. Then a detailed description of our method is

presented in Section III. Experiments and discussions about

the processing speed, recognition accuracy and speech speed

robustness of our method on TIMIT dataset are given in

Section IV. Finally, the paper is concluded in Section V.
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II. RELATED WORK

As a more flexible mechanism, adaptive downsampling is

expected to outperform fixed-rate downsampling in terms of

model performance and running speed. In [9], a reinforcement

learning (RL) enabled skip-policy network is introduced to

allow acoustic model to dynamically skip frames. Although

recognition accuracy and running speed are improved in their

experiments, RL methods usually suffers from high variance

[10] and not easy to handle. An algorithm which enables end-

to-end speech recognition models to dynamically decide how

many frames should be processed to predict a linguistic output

is proposed in [11]. The core algorithm used to establish the

model, known as adaptive computation steps, is realized by

a halting layer, which consists of a CNN and a sigmoidal

unit. However, for smaller linguistic units that badly overlap

in time, such as phoneme, it is difficult for the algorithm to

give explicit alignments of the targets all the time.

Meanwhile, a novel online attention mechanism is recently

proposed in [12], yielding an end-to-end differentable method

for learning monotonic alignments. During inference, the

decoder inspects encoder hidden representations and chooses

a single item for output generation at each decoding step.

Inspired by this hard monotonic process, we propose a new

adaptive downsampling approach which uses standard back-

propagation(BP) for training and facilitates dynamic frame

skipping for inference.

III. MODEL

Compared to online attention machanism in [12], our

method has some modifications. We realize adaptive down-

sampling between two encoder layers. This process is nondif-

ferentiable because of sampling, so we also show an algorithm

for computing its expected output in order to train our model

with standard BP. Furthermore, we apply penalty term to make

skipping probalilities more discrete.

A. RNN Layer in the Encoder

We first review the structure of a RNN layer to motivate

our approach. In RNNs, recurrent connections between current

hidden state and previous hidden state are shared along time,

which allows RNNs to capture temporal information of a

sequence. In the encoder, we usually use multilayer reucrrent

network, in which previous layer output can be passed to the

next layer as input. Specifically, given the hidden state hl
i−1

at timestep i−1 and the input hl−1
i at timestep i, we have hl

i:

hl
i = RNN(hl

i−1, h
l−1
i ) (1)

B. A Hard Adaptive Downsampling Progress

Different from previous hard monotonic attention work [12]

where monotonic process is located between encoder and

decoder, our downsampling mechanism is performed between

two encoder layers. Therefore, given an output representations

(hl−1
1 , ..., hl−1

T ) of encoder layer l−1, we need to downsample

the sequence adaptively by inspecting hl−1
j and updating

hidden state hl
i of encoder layer l when necessary. Index i and

j are timesteps of layer l and l−1 respectively . After hl
i−1 is

updated with hl−1
ti−1

, the downsampling process continues from

hl−1
ti−1+1, where ti is the index of previous layer states chosen

to update hl
i. For j = ti−1 + 1, ti−1 + 2, · · ·

ei,j = a(hl
i−1, h

l−1
j ) (2)

pi,j = σ(ei,j) (3)

zi,j ∼ Bernoulli(pi,j) (4)

where a(·) is an energy function and σ(·) is the logistic

sigmoid function. When zi,j = 1 for some j, we set ti = j
and then compute hl

i

hl
i = RNN(hl

i−1, h
l−1
j ) (5)

We repeat this operation, always starting from ti−1+1, until

the end of an entry. With this process, adaptive downsampling

can be realized during inference with introducing only a small

amount of computations in Eqs. (2,3).

C. Training in Expectation

As described in [12], the process above cannot be trained

directly with standard backpropagation because of sampling.

Therefore the expected value of hl−1
ti is computed for model

training.

We compute ei,j and pi,j as in Eqs. (2,3). In order to com-

pute the expected value of hl−1
ti , we also need αi,j which can

be interpreted as a weighting on the hidden states. Specifically,

hl−1
k (k ∈ {1, · · · , j − 1}) is selected at timestep i − 1 and

hl−1
j is selected at timestep i instead of hl−1

k+1, · · · , hl−1
j−1. In

consideration of all the values of k, we have

αi,j = pi,j

j−1∑

k=1

[
αi−1,k

j−1∏

l=k+1

(1− pi,l)

]
(6)

We define α0,j = (1 − p1,1)δj (i.e. α0,1 = 1 − p1,1 and

α0,j = 0 for j ∈ {2, · · · , T}) and
∏m

n x = 1 when n > m to

make Eq. (6) complete. Also we can compute αi,j recursively

from αi−1,j−1 and αi,j−1 as shown in Eq. (7):

αi,j = pi,j

{
j−2∑

k=1

[
αi−1,k

j−1∏

l=k+1

(1− pi,l)

]
+ αi−1,j−1

}

= pi,j

[
(1− pi,j−1)

αi,j−1

pi,j−1
+ αi−1,j−1

]
(7)

We can explain Eq. (7) intuitively. The augend (1 −
pi,j−1) αi,j−1/pi,j−1 multiplying by pi,j can be comprehend-

ed as the probability that the model does not select hidden

states item j − 1 at timestep i − 1 and could have selected

hidden states item j − 1 at timestep i, but it selects hidden

states item j instead. The addend αi−1,j−1 multiplying by

pi,j represents the probability that the model selects hidden

states item j − 1 at timestep i− 1 and hidden states item j at

timestep i afterwards.

Let qi,j = αi,j/pi,j , we have:

qi,j = (1− pi,j−1)qi,j−1 + αi−1,j−1 (8)
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Move the augend to the left:

qi,j − (1− pi,j−1)qi,j−1 = αi−1,j−1 (9)

Divide the same express
∏j

k=1(1− pi,k−1):

qi,j∏j
k=1(1− pi,k−1)

− qi,j−1∏j−1
k=1(1− pi,k−1)

=
αi−1,j−1∏j

k=1(1− pi,k−1)
(10)

Add up the equations from index 1 to j:

j∑

l=1

(
qi,l∏l

k=1(1− pi,k−1)
− qi,l−1∏l−1

k=1(1− pi,k−1)

)

=

j∑

l=1

αi−1,l−1∏l
k=1(1− pi,k−1)

(11)

Transpose the terms:

qi,j =

(
j∏

k=1

(1− pi,k−1)

)(
j∑

l=1

αi−1,l−1∏l
k=1(1− pi,k−1)

)
(12)

Note that we define qi,0 = 0 and pi,0 = 0 in this process.

Now we can compute qi,j and αi,j (j ∈ {1, · · · , T}) in

parallel. With αi,j we can then compute the expectation of

hl−1
ti :

ci =
T∑

k=1

αi,kh
l−1
k (13)

Then we have hl
i:

hl
i = RNN(hl

i−1, ci) (14)

In order to realize adaptive downsampling with a factor of

2, we restrain the value of i from 1 to T/2 and j from 1 to T

in the training process.

D. Penalty Term

In the proposed downsampling approach, the probability of

choosing an index in the hidden states pi,j is expected to be

discrete, approximately 0 or 1 at best. So we add the entropy

into our loss function as a penalty term in order to make the

probabilities closer to 0 or 1. Specifically, for the probability

of choosing a frame p, we can compute the entropy as follow:

H(U) = E [− log pi]

= −p log p− (1− p) log(1− p) (15)

IV. EXPERIMENTS

A. Data

We trained and evaluated our models on the TIMIT corpus

[13]. We used the train-dev-test split from the Kaldi [14]

TIMIT s5 recipe. Training was done on the standard 462

speaker set with all SA utterances removed. We used the 50

speaker dev set for early stopping, and tested on the 24 speaker

core test set. As input features, we used 40 mel-scale filterbank

coefficients together with the energy in each frame, and first

and second temporal differences, yielding in total 123 features

per frame. In the training set, each feature was rescaled to

have zero mean and unit variance. To indicate the end of the

TABLE I
PER OF DIFFERENT DOWNSAMPLING APPROACHES ON TIMIT CORPUS.

Downsampling Test PER(%) Time(sec)
Fixed 22.44 4.62

Adaptive 20.86 4.80

utterance, we concatenated an all-zero frame at the end of each

input sequence. As training targets, we used the full 61-phone

set with an extra end-of-sequence token that was appended to

each target sequence. We reported the phone error rate (PER)

after applying the standard mapping to 39 phonemes.

Also, our experiments involved different speeds of datasets.

We changed the speed with STRAIGHT. STRAIGHT (Speech

Transformation and Representation using Adaptive Interpola-

tion of weiGHTed spectrum) is basically a channel vocoder

[15], used as a speech analysis, modification synthesis system.

B. Training

Our model used a 3-layer RNN with 256 GRU units

as encoder, and the activations of the 256 top-layer units

were used as the representation h. In the baseline system,

the output of each layer was downsampled with a fixed

factor of two, yielding totally 1/8 downsampling rate. In our

proposed approach, adaptive downsampling was used between

the second and third layer, and we trained it to achieve

approximately equal downsampling ratio with baseline (see

section III). A windowing approach [4] was used to realize

an online system. We set the length of window to 20 to make

the time delay of our online system small enough. Note that

this attention mechanism can be seen as an online strategy.

Though it is not the advanced online attention, we used it for

fundamental evaluation and will consider more effective online

methods in our future work. For the decoder, we used a single

unidirectional GRU layer with 256 units, fed directly into

the output softmax layer. The output tokens were embedded

via a learned embedding matrix with dimensionality 30. Our

attention energy function used a hidden dimensionality of 512.

Adam optimizing algorithm was used in our experiments with

batch size set to 16. Learning rate was set to 1e-3 in the

beginning and decays to 1e-4 and 5e-5 respectively when no

PER improvement is found on valid set. Also, a dropout rate of

0.3 was used to prevent our neural networks from overfitting.

C. Results

We first evaluate our method on TIMIT to compare the

performance of our adaptive downsampling method with fixed

downsampling selecting every eighth of hidden states of

the below layer. Our experiments show that our approach

decreases the error rate of the model without significantly

increasing the process time. Table 1 shows detailed experiment

results, including phone error rates (PERs) and time for the

decoding on the test set. In the proposed method, a 7% relative

PER reduction is achieved. To demonstrate that our adaptive

downsampling has the ability to select crucial frames, we show

a test set example of the choices of frames by the adaptive

downsampling layer and boundaries of true labels in Fig. 1.
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TABLE II
PER OF DIFFERENT SPEED TEST SETS.

PER(%)
Mismatched speed Matched speed

0.8 0.9 1.0 1.1 1.2 Average 0.8 0.9 1.0 1.1 1.2 Average
Fixed 29.65 26.57 22.44 28.02 30.23 27.38 24.31 23.95 24.19 24.30 24.98 24.34

Adaptive 26.10 24.12 20.86 25.11 26.64 24.56 22.58 22.16 22.68 23.40 23.33 22.83
True ratio 10.23% 11.17% 11.88% 12.76% 13.44% 11.90% 10.74% 11.78% 12.75% 13.63% 14.43% 12.67%
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Fig. 1. The alignments of selected frames and the boundaries of ground truths.

Alignments, which we refer to attention on the second layer

by the third layer here but not attention in decoder, are drawn

in the way we can visualize attention. The y-coordinate and x-

coordinate represent timesteps in the adaptive downsampling

encoder layer and the layer below it seperately. The vertical

lines are boundaries of true labels in the utterance. In the upper

figure we show the expectation of soft alignments computed

in the training process, while hard alignments are drawn in the

lower figure. We can see that alignments crowd together where

the corresponding phonemes are shorter such as the phonemes

in the red rectangle, and skip further where the phonemes

are longer as shown in the green rectangle. This phenomenon

proves that the model can tell the similarity among continuous

frames and has more attention on the crucial ones.

Furthermore, we wonder whether the proposed approach is

adaptive to different speeds of speaking or not. We change the

speed of datasets and do experiments on them. In detail we

seperately change the datasets into 0.8, 0.9, 1.1, 1.2 times of

original speed. We first directly test our model which is trained

with original training set on test sets of all five speeds. In this

way the speed of test data is mismatched with training set. The

results are shown in the left half of Table 2, which prove that

the proposed method is somewhat adaptive to different speeds

of speaking without seeing them during training. Our PER is

improved by 10.3% relative on average. Moreover, considering

the demands in real life that people’s speaking speeds are quite

different, we then train the model with training sets of all five

speeds, i.e. data augmentation. As shown in the right half of

Table 2, the accuracies of varied speed speech recognition are

better than the former experiments without date augmentation,

and have improvements compared with the fixed model, too,

by 6.2% relative on average. We also count the ratio of the

number of selected frames in adaptive downsampling to the

number of all frames of each speed (true ratio is 0.125 for

fixed downsampling). As in the last line of Table 2, when the

speech is slower, the sentence length becomes longer and the

ratio is smaller. Also when the speech is faster, the ratio is

larger. This trend proves the adaptive ability of our approach.

V. CONCLUSIONS

In this paper, we aim to present an adaptive downsam-

pling method in a RNN-based sequence-to-sequence model on

speech recognition. We have realized this approach and proved

that it not only improves the performance of speech recog-

nition, but has comparable speed with fixed downsampling

method as well. The approach can be trained with standard BP

and sample crucial frames when decoding. Moreover, we show

that this method has the ability to adapt sentences of different

speeds. We do our experiments on both the original dataset

and augmented dataset, and prove that the performances are

impoved in both conditions.

We have validated our methed on the TIMIT corpus. Next

we plan to evaluate its performance on larger datasets. Fur-

thermore, we used a windowing soft attenion mechanism to

decode online instead of using more effective online attentions.

This is likely to be a part of our future work as well.
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