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Abstract—This paper presents a speech recognition system
based on deep tensor neural network which uses multifactor
feature as input feature of acoustic model. First, a deep neural
network is trained to estimate articulatory feature from input
speech, where the training data is MOCHA database[1]. Mel
frequency cepstrum coefficients in conjunction with articulatory
feature are used as multifactor feature. Deep tensor neural
network which involves tensor interactions among neurons is
used as the acoustic model in this system. Speech recognition
results indicate that the multifactor feature helps in improving
speech recognition performance not only under clean conditions
but also under noisy background conditions; deep tensor neural
network is more capable of modeling multifactor features because
of its tensor interactions than deep neural network.

I. INTRODUCTION

At present, a speech recognizer works well in the quiet
environment. But in the noisy environment, the performance
of speech recognition system will be greatly degraded. The
articulatory features (AFs) reflect the physical location of the
articulation organ, and it is less affected by acoustic noise and
external environment. Therefore, the AFs are more robust than
the acoustic feature naturely. Over the years, the study of the
AFs has received extensive attention. According to Liberman
[2] from Yale university in the United States, the language
sensing system and the language-generating motion system
develop together, interact and work together, and the Gesture
of pronunciation is the common feature used in the process of
language generation and perception. In [3], Mesgarani from
University of Calif San Francisco points out that the brain can
encode AFs in the superior temporal gyrus through regional
response. K. E. Manjunath [4] obtains 74.7% phoneme recog-
nition rate on the TIMIT database using the AF in conjunction
with Mel Frequency Cepstrum Coefficient (MFCC). [5] uses
articulatory information as an additional input to a fused
deep neural network (DNN) and convolutional deep neural
network (CNN) acoustic model and reduces the error rate
by 12% relative to the baseline in both Switchboard subset
and CallHome subset. Ioannis K. Douros [6] demonstrates
that articulatory information is helpful for phone recognition.
Other experiments have also confirmed that the use of AFs
can improve the performance of speech recognition systems
[7], [8], [9], [10], [11].

In recent years, tensor modeling as a multifactor analy-
sis method has shown its potential in processing high-order
signals and improving neural network modeling capabilities.

In terms of features, [12] uses the techniques of nonnegative
tensor factorization to propose convolutive nonnegative tensor
factorization (CNTF). This algorithm provides considerable
improvements for a clean-trained speech recognition system.
Qiang Wu etc.[13] proposes a novel speech feature extraction
method based on Gabor filtering and tensor factorization
which is able to improve the speech recognition performance.
Multifactor analysis using tensor provides a potential approch
for generating robust features. For neural network modeling
using tensor, [14] replaces one of the sigmoid hidden layers
in the neural network with a tensor layer, and achieves better
results in frame-level phoneme classification. [15] designs a
tensor-based DNN that the hidden speaker and environment
factors and tied triphone states are jointly approximated. Dong
Y. et al. [16] proposes that deep tensor neural network (DTNN)
is used for Large Vocabulary Continuous Speech Recognition
(LVCSR) and has achieved good results. Considering the
tensor in neural network design has the potential to enhance
the capability of neural network modeling.

The AFs and acoustic features belong to two types of fea-
tures in different dimensions, while the tensor neural network
is suitable for analyzing the relationship between multiple
factors. Inspired by this idea, AFs and tensor are considered
to add into a speech recognition system. First, a DNN is
trained to estimate AFs of speech signals. We then use it to
generate AFs. The AFs in conjunction with MFCCs are used as
features for training and testing English LVCSR systems. Ex-
perimental results show that AFs can provide complementary
information that improves speech recognition performance not
only under clean conditions but also under noisy background
conditions. And for DTNN, it has a better capability to model
multifactor features and noisy speech features than DNN.
When the LVCSR system uses the MFCCs along with AFs
as input feature, the DTNN provides larger improvement in
speech recognition performance than the system that only uses
MFCCs as input feature.

II. DATASET

To train a model for estimating AFs from speech, we
require a speech dataset containing truth AFs. Very few
libraries marked with AFs. The MOCHA (Multi-CHannel
Articulatory) database [1] is created to provide a resource
for training speaker-independent continuous ASR systems and
for general co-articulatory studies. The articulatory channels

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

650978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019



include Electromagnetic Articulograph (EMA) sensors directly
attached to the seven positions which are three positions of
tongue (tip, body, dorsum), upper and lower lip, jaw and the
velum. The EMA data consists of x and y co-ordinates making
14 coefficients in total. The speech is recorded simultaneously
with these articulatory measures. The recording is done at
the same studio at the Queen Margaret University College,
Edinburgh.

There are 920 English sentences that 1 male and 1 female
native speaker record 460 sentences respectively which have
been checked. Also, the dataset includes unchecked speech
sentences that 3 male and 4 female record. The speech
signals are at a sampling rate of 16kHz. 4010 recordings are
determined for training the DNN model to estimate AFs. 80%
of the data is used as the training set, 10% is used as the cross
validation set, and the remaining 10% is used as the test set.

For LVCSR experiments, we use the popular speech
database TIMIT. The first to 12th-order MFCCs and energy,
along with their first and second temporal derivatives of the
speech is extracted for connecting with AFs later. The training
set consists of 462 speakers. The development set which is
used for tuning contains 50 speakers. Results are reported
using the standard 24-speaker core test set consisting of 192
sentences.

III. AF ESTIMATOR

Estimating the AFs of the speech signal is a task where
the acoustic feature is used to predict the AFs. DNN has
been used for the task [17], [10], [18]. DNN has a strong
non-linear transformation capability so that it can learn the
correlation between the input and the output. In the training
process, the nets are trained with a greedy layer-wise learning.
The algorithm means training one layer at a time. Then we
use back propagation to fine-tune the network.

We represent the speech using first to 12th-order MFCCs
and energy, along with their first and second temporal deriva-
tives as input feature. The speech data is analyzed using a
25-ms Hamming window with a 10-ms fixed frame rate. The
AFs of the speech in MOCHA are downsampled to 100Hz to
temporally synchronize with MFCCs. The experiment uses a
context window of 5 frames. Hence, for the DNN model of AF
estimator, the number of input nodes is 195 and the number
of output nodes is 14 for EMA data.

IV. ACOUSTIC MODEL

For LVCSR system, DTNN that combined with Hidden
Markov Model (HMM) is used as the acoustic model. The
architecture of DTNN is shown in subgraph (a) of the Fig.
1. The DTNN develops the regular DNN by replacing one or
more layers with double-projection and tensor layer.

It can be seen from subgraph (a) of the Fig. 1, the hidden
layer of DTNN hl−1 is separated into two parts: hl−11 and
hl−12 . The dimension of hl−11 is N l−1

1 and hl−12 is N l−1
2 .

These two parts are connected with the next hidden layer hl

which is N l × 1 vector through the three-way tensor ul of

Fig. 1. The architecture of DTNN.

dimension N l−1
1 ×N l−1

2 ×N l. In the (a), the three-way tensor
is represented with a cube. The formula is as follows,

hl(n) = f(
∑
i,j

uli,j,nh
l−1
1(i)h

l−1
2(j) + bl(n)) (1)

where i, j, k are indexes of the hidden units in layers hl−11 ,
hl−12 , and hl, respectively. f(·) is the activation function. The
two parts hl−11(i) and hl−12(j) learn different information. [16] calls
the hidden layer hl−1 a double-projection (DP) layer because
the information of the hl−2 is projected into two separate
subspaces at layer hl−1 as hl−11 and hl−12 . The hl is connected
with hl−1 which is DP layer through the tensor ul. In order
to illustrate the operation of DTNN, the input to layer l is
represented as tl.

tl = vec(hl−11 ⊗ hl−12 ) = vec(hl−11 (hl−12 )T ), (2)

where ⊗ is the Kronecker product, vec(·) represents the
column-vectorized representation of the matrix, and T means
transpose. Finally, the tensor layer is shown as follows,

hl(n) = f(
∑
i

wl
(i,n)t

l
(i) + bl(k)), (3)

where wl is the weight matrix that the tensor ul is rewritten.
bl is the bias. So the alternative structure of DTNN is shown
in subgraph (b) of the Fig. 1.

Fig. 1 shows the DTNN with one DP layer. However, each
layer can be DP layer. Fig. 2 shows the structure of the DTNN
in which hidden layers are all DP layers.

For DP layers, if the given input is tl, the activation vector
is illustated as (4)
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Fig. 2. The alternative architecture of DTNN.

zl(tl) = (wl)T tl + bl. (4)

The output for the DP layer has two parts,

hli = f(zli(t
l)) = f((wl

i)
T tl + bli), (5)

where i = 1, 2 which represents the part number.
The loss function to optimize the DTNN model is (6).

E =
1

N

∑
x

E(x) =
1

N

∑
x

∑
y

p̃(y|x)logp(y|x), (6)

where N is the number of samples in the training set. p̃(y|x)
is the target probability and p(y|x) is the model’s predicted
probability. The parameters can be learned using the backprop-
agation (BP) algorithm. The DTNN can have the conventional
layer and DP layer at the same time. For the conventional
layer, the error signal

el−1(x) =
∂E(x)

∂tl
= wldiag(f ′(zl(tl)))el(x), (7)

where f ′(·) is the derivative of the activation function.

∂E(x)

∂wl
= tl(diag(f ′(zl(tl)))el(x))T , (8)

∂E(x)

∂bl
= diag(f ′(zl(tl)))el(x), (9)

where diag(·) is the diagonal matrix determined by the
operand and T represents transposition.

TABLE I
AVERAGE R VALUE OF DIFFERENT POSOTION

Position R
Tongue body 0.9013
Tongue tip 0.8801
Tongue dorsum 0.8832
Upper lip 0.8591
Lower lip 0.8602
Jaw 0.9001
Velum 0.8994

The learning algorithms is more complicated for the DP
layers. The gradients needed for BP algorithm in the DP layers
are

∂E(x)

∂wl
i

= tl(diag(δ′(zli(t
l)))eli(x))

T , (10)

∂E(x)

∂bli
= diag(δ′(zli(t

l)))eli(x), (11)

and
el−1(x) =

∑
j∈1,2

wl
idiag(δ

′(zli(t
l)))eli(x). (12)

The derivation process can be found in [16].
We implement the LVCSR system on the Kaldi platform

[19]. The input feature is multifactor feature which con-
sists of 13 MFCCs (including energy), along with their first
and second temporal derivatives and AFs. Before acoustic
model training, multifactor feature is processed using speak-
level mean and variance normalization. Triphone HMMs with
decision-tree-based state clustering are used to train the acous-
tic model. The number of fully tied states is 2072. The model
uses three left-to-right states per phone and is trained with
maximum likelihood estimation. Language model (LM) is
used statistical bigram model.

V. EXPERIMENTAL RESULTS

A. The performance of AF estimator

For the AF estimator, the DNN was trained with a greedy
layer-wise learning algorithm, where we trained one hidden
layer at a time with different numbers of nodes two times and
computed the average performance on the cross validation set.
The number of nodes in each layer was determined according
to average performance as specified before. After the number
of nodes in each layer was determined, a final training pass for
all the layers was performed. There were four hidden layers
with number of nodes, 150, 200, 80 and 40. The activation
function of the network was tanh. TABLE 1 shows the average
Pearson’s product-moment correlation coefficient (R) for each
of the AFs from the DNN. The x and y co-ordinates of
the same position are averaged to represent the value of the
position.

The R values are all above 0.85. Considering the limitation
of the amount of data when training the model, the DNN
mapping model has a good effect and could be used to extract
the AFs of other speech data with unlabeled AF parameters.
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B. Benefits of using AFs

For the LVCSR experiments, we used MFCCs in conjunc-
tion with AFs as the input feature. Different acoustic models
and input features were used to observe the benefits of using
AFs. We use one-layer DP for the experiment. The reason will
be explained later. The second column of TABLE 2 shows the
WER obtained from the different systems on the clean corpus.
The results of the first four models show that for GMM-
HMM model, using MFCCs+AFs achieves 9.8% relative WER
reduction compared with that using MFCCs. And the value is
6.7% for DNN-HMM model. The results means that when
using AFs combined with MFCC as the input feature of
acoustic model, the system has a better performance. This
illustrates that AFs have a positive effect on the improvement
of speech recognition performance. And DNN model has a
better modeling capability than GMM.

AURORA-4 noises at different SNRs of 0dB, 5dB, 10dB
and 20dB are added into the test set for the robust experiment.
We choose four kinds of noise. Two are stationary noise,
street and babble, and other two are car and airport which
are stationary noise. TABLE 2 and TABLE 3 show the WER
obtained from the different systems at different SNR.

It can be seen from the first four models in TABLE 2 and
TABLE 3, take the babble as an example, using AFs helps
to reduce the relative WER by 6.2% for GMM-HMM and
11.7% for DNN-HMM in average. Obviously, the AFs help
in improving speech recognition performance not only under
clean conditions but also under noisy background conditions
when combined with MFCCs, which can in turn prove the AFs
are less affected by acoustic noise and external environment.

C. The modeling capability of DTNN

For DTNN, we used the notation in [16] to represent
the DP and tensor layers. Take (32 : 32) for an example,
(32 : 32) denotes a DP layer with 32 units in each of the two
parts. TABLE 4 compares the performance of different DTNN
configurations on the word error rate (WER).

From the TABLE 4, we can see that the larger the size of the
DP layer, the better the performance. However, as the size of
the DP layer increases, the number of the network parameters
will increase, so the (64 : 64) is finally chosen. Also, the
performance of the model which includes two DP layers is
worse than that with one DP layer. This is because much of
the information is lost when the features is transformed into
128 dimension in DP layer which is much smaller than 2048 in
DNN. We can observe that replacing the top hidden layer with
DP layer achieve 4.3% relative WER reduction over the DNN.
That’s why we choose the configuration 2048− 2048− (64 :
64) for the experiment.

For the experiment on the clean corpus, the second column
of TABLE 2 includes the WER of DTNN-HMM system.
DTNN helps to reduce the relative WER by 1% and 4.3%
under MFCC and MFCC+AFs features compared with DNN.
The DTNN-HMM model with MFCC along with AFs as input
feature has the best performance in the all models listed in this
paper.

For the anti-noise experiment, we list the WER of DTNN-
HMM model in the last two lines in TABLE 2 and TABLE
3. Take the average results of Babble noise with the least
performance improvement as an example, the DTNN-HMM
model using MFCC+AFs achieves 3.0% relative WER reduc-
tion compared with DNN-HMM model using the same feature.
However, if the feature is MFCC alone, the value of WER
reduction becomes 2.4%. The situation is similar under other
conditions. It illustrates that DTNN has potential in modeling
multifactor features.

VI. CONCLUSIONS

In this paper, we present a speech recognition system
based on deep tensor neural network which uses multifactor
feature as input feature of acoustic model. A DNN is used
to estimate articulatory features from the speech signal. The
well-trained DNN model for estimating articulatory features
have a good performance to extract the AFs of other speech
data with unlabeled AFs. Also, the DTNN which involves
tensor interactions among neurons is used as acoustic model
of speech recognition. We have presented LVCSR experiments
using multifactor feature and DTNN. In terms of input feature
of acoustic model, when combined with MFCC, AFs help
in improving speech recognition performance under clean
as well as noise conditions. In terms of acoustic model,
DTNN is a powerful deep architecture capable of modeling
multifactor features and noisy speech. The experimental results
also demonstrate when the DP layer is placed at the top hidden
layer, the DTNN performs best. Our future work will extend
multifactor feature and DTNN to more languages.
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